Introduction to Globus for New Users
SaaS for Research Data Management

Vas Vasiliadis
vas@uchicago.edu

NC State – March 27, 2018
Research data management today

How do we...
...move?
...share?
...discover?
...reproduce?
Globus delivers…
Big data transfer, sharing, publication, and discovery…
…directly from your own storage systems…
…via software-as-a-service
Globus enables...

Campus Bridging

...within and beyond campus boundaries
Bridge to campus HPC

Move datasets to campus research computing center

Move results to laptop, department, lab, …
Bridge to national cyberinfrastructure

Move datasets to supercomputer, national facility

Move results to campus (...)

MIRA
Bridge to instruments

Pre-processed Data

Analysis store

High durability, low cost store

Amazon Glacier

Raw Source Data
Bridge to collaborators

Public/Private Cloud stores

External Campus Storage

NC STATE UNIVERSITY

XSEDE
Jetstream
NERSC
EC2

Cornell University

red cloud
ceph
openstack
S3

Google Drive

Corl wind services
Bridge to community/public

Project Repositories, Replication Stores

Public Repositories

EC2

XSEDE

Jetstream

NERSC
Globus SaaS: Research data lifecycle

1. **Researcher initiates transfer request; or requested automatically by script, science gateway.**

2. **Globus transfers files reliably, securely.**

3. **Researcher selects files to share, selects user or group, and sets access permissions.**

4. **Globus controls access to shared files on existing storage; no need to move files to cloud storage!**

5. **Collaborator logs in to Globus and accesses shared files; no local account required; download via Globus.**

6. **Researcher assembles data set; describes it using metadata (Dublin core and domain-specific).**

7. **Curator reviews and approves; data set published on campus or other system.**

8. **Peers, collaborators search and discover datasets; transfer and share using Globus.**

Use a Web browser

Access any storage

Use an existing identity
Conceptual architecture: Hybrid SaaS

- **Source Endpoint**: Subscriber owned and administered storage system
- **Globus “client” software**: Globus
- **Destination Endpoint**: Single, globally accessible multi-tenant service
- **DATA Channel**: No data relay or staging via Globus
- **CONTROL Channel**: Subscriber Control Domain
- **Globus Control Domain**: Single, globally accessible multi-tenant service
Conceptual architecture: Sharing

External User Control Domain

Globus Control Domain

DATA Channel

CONTROL Channel

Managed Endpoint

Shared Endpoint

Administrator managed filesystem permissions

User managed "overlay" permissions

Managed Endpoint

Subscriber Control Domain

Global
Why use Globus?

• **Simplicity**
 – Consistent UI across systems
 – Easy access to collaborators

• **Reliability and performance**
 – “Fire-and-forget” file transfer
 – Maximized WAN throughput

• **Operational efficiency**
 – Low overhead SaaS model
 – Highly automatable: CLI, RESTful API

• **Access to a large and growing community**
Demonstration
File Transfer
File Sharing
Group Management
Data Publication and Discovery

Materials Data Facility Community home page

The Materials Data Facility (MDF) is a scalable repository where materials scientists can publish, preserve, and share research data. The repository provides a focal point for the materials community, enabling publication and discovery of materials data of all sizes.

MDF is a pilot project funded by NIST, and serves as the first pilot community of the National Data Service.

Contact Ben Blaiszik (blaiszik@uchicago.edu) to begin publishing your data

https://publish.globus.org
Globus data publication framework

<table>
<thead>
<tr>
<th>Identifier</th>
<th>URL</th>
<th>Handle</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Standard</td>
<td>Domain-specific</td>
<td>Custom</td>
</tr>
</tbody>
</table>

Description

<table>
<thead>
<tr>
<th>Curation</th>
<th>Acceptance</th>
<th>Human-validated</th>
<th>Machine-validated</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Acceptance</td>
<td>Human-validated</td>
<td>Machine-validated</td>
</tr>
</tbody>
</table>

Access

<table>
<thead>
<tr>
<th>Access</th>
<th>Anonymous</th>
<th>Public</th>
<th>Embargoed</th>
<th>Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient</td>
<td>Project Lifetime</td>
<td>Archive</td>
<td>“forever”</td>
<td></td>
</tr>
</tbody>
</table>

Preservation

<table>
<thead>
<tr>
<th>Preservation</th>
<th>Transient</th>
<th>Project Lifetime</th>
<th>Archive</th>
<th>“forever”</th>
</tr>
</thead>
</table>

Demonstration

Data Publication
How can I use Globus on my computer?
…makes your storage system a Globus endpoint
Globus Connect Personal

- Installers do not require admin access
- Zero configuration; auto updating
- Handles NATs
How can I integrate Globus into my research workflows?
Globus serves as...

...a platform for building science gateways, portals, and other web applications in support of research and education.
Use(r)-appropriate interfaces

- **Web**
- **CLI**
- **Rest API**

```
GET /endpoint/go%23ep1
PUT /endpoint/vas#my_endpt
200 OK
X-Transfer-API-Version: 0.10
Content-Type: application/json
```
Integrate file transfer and sharing capabilities into scientific web apps, portals, gateways, etc.

Use existing institutional ID systems in external web applications
Globus PaaS developer resources

Python SDK

Sample Application

Jupyter Notebook

Requirements
- You need to be in the tutorial users group for sharing: https://www.globus.org/app/groups/50b6a29c-63a
- Installed Globus Python SDK

Configuration
First you will need to configure the client with an OAuth2 access token. For the purpose of this tutorial, you can use the website. Click the "Jupyter Notebook" option and copy the resulting text below, or click on "Globus CLI"

```
In [15]: from __future__ import print

# import print

tutorial_endpoint_1 = "ddb59a0-6d04-11e5-ba46-22000b92c6ec" # endpoint "Globus Data Portal"

tutorial_endpoint_2 = "ddb59a0-6d04-11e5-ba46-22000b92c6ec" # endpoint "Globus Data Portal"

tutorial_users_group = "50b6a29c-63ac-11e4-8062-22000ab68755" # group "Tutori

In [16]: transfer_token = None # if None, tries to get token from ~/.globus.cfg file
```
Thank you to our sponsors...

U.S. DEPARTMENT OF ENERGY

NSF

THE UNIVERSITY OF CHICAGO

National Institute of Standards and Technology
U.S. Department of Commerce

Argonne National Laboratory

powered by Amazon Web Services
Globus sustainability model

- **Standard Subscription**
 - Shared endpoints
 - Data publication
 - Management console
 - Usage reporting
 - Priority support
 - Application integration
 - HTTPS support (coming soon)

- **Branded Web Site**

- **Premium Storage Connectors**

- **Alternate Identity Provider** (InCommon is standard)
Thank you to our users...

- 48 most server endpoints at a single organization
- 384 PB transferred
- 64 billion tasks processed
- 76,000 registered users
- 500 100TB+ users
- 14,000 active users
- 3 months longest running managed transfer
- 10,000 active endpoints
- 350+ federated identities
- 1 PB largest single transfer to date
- 5,000 active shared endpoints
- 99.5% uptime
Our supporters
Join the Globus community

- Access the service: globus.org/login
- Create a personal endpoint: globus.org/app/endpoints/create-gcp
- Documentation: docs.globus.org
- Engage: globus.org/mailing-lists
- Subscribe: globus.org/subscriptions
- Need help? support@globus.org
- Follow us: @globusonline
Help us get the word out!

• **Share your experiences!**
 – **Contribute** to our Usage Brief Library
 – **Add a slide** or logo in event talks (we can help!)
 – **Mention Globus** in news articles or interviews
 – **Tag us** in posts about projects that use Globus
 – **Acknowledge Globus** in your journal articles

• **Why?**
 – Give your peers new ideas on how to use Globus
 – Help us grow the user community

“…and file sharing with Globus.”
“…with Globus for data transfer.”
“We used Globus for…”
“…and Globus.”
“I needed Globus to…”
“#ALCF #ORNL #theNCI #CANDLE #globusonline”
“…using tool x, tool y, Globus, technology z…”
Managing Globus Endpoints
Globus for System Administrators

Vas Vasiliadis
vas@uchicago.edu

NC State – March 27, 2018
Globus Connect Server

• Makes your storage accessible via Globus
• Multi-user server, installed and managed by sysadmin
• Default access for all local accounts
• Native packaging Linux: DEB, RPM

[Diagram of Globus Connect Server]

docs.globus.org/globus-connect-server-installation-guide/
Globus Connect Server

Non-POSIX Connectors

POSIX-compliant Connector

Local Storage System
(HPC cluster, NAS, …)

Globus Connect Server

MyProxy CA

OAuth Server

GridFTP Server

Local system users

DTN

globus
Creating a Globus endpoint on your server

- In this example, Server = Amazon EC2 instance
- Installation and configuration of Globus Connect Server requires a Globus ID
- Go to globusid.org
- Click “create a Globus ID”
 - Optional: associate it with your Globus account
What we are going to do:

1. Install Globus Connect Server
 - Access server as user “campusadmin”
 - Update repo
 - Install package
 - Setup Globus Connect Server

ssh

2. Log into Globus

3. Access the newly created endpoint (as user ‘researcher’)

4. Transfer a file
Access your host

• Get the IP address for your EC2 server
• Log in as user ‘campusadmin’:
 ssh campusadmin@<EC2_instance_IP_address>
• NB: Please sudo su before continuing
 – User ‘campusadmin’ has sudo privileges
Install Globus Connect Server

$ sudo su
$ curl -LO http://toolkit.globus.org/ftppub/globus-connect-server/globus-connect-server-repo_latest_all.deb
$ dpkg -i globus-connect-server-repo_latest_all.deb
$ apt-get update
$ apt-get -y install globus-connect-server
$ globus-connect-server-setup

Use your Globus ID username/password when prompted

You have a working Globus endpoint!
Access the Globus endpoint

• Go to Manage Data → Transfer Files
• Access the endpoint you just created
 – Search for your EC2 host name in the Endpoint field
 – Log in as “researcher”; you will see the user’s home directory
• Transfer files to/from a test endpoint (e.g. Globus Tutorial) and your EC2 endpoint
Configuring Globus Connect Server
Endpoint configuration

• Globus service “Manage Endpoints” page
• DTN (Globus Connect Server) config
 /etc/globus-connect-server.conf
 – Standard .ini format: [Section] Option = Value
 – To enable changes you must run:
 globus-connect-server-setup
 – “Rinse and repeat”
Common configuration options

- **Manage Endpoints page**
 - Display Name
 - Visibility
 - Encryption

- **DTN configuration file – common options:**
 - RestrictPaths
 - IdentityMethod (CILogon, Oauth)
 - Sharing
 - SharingRestrictPaths
Path Restriction

• Default configuration:
 – All paths allowed, access control handled by the OS

• Use RestrictPaths to customize
 – Specifies a comma separated list of full paths that clients may access
 – Each path may be prefixed by R (read) and/or W (write), or N (none) to explicitly deny access to a path
 – ‘~’ for authenticated user’s home directory, and * may be used for simple wildcard matching.

• e.g. Full access to home directory, read access to /data:
 – RestrictPaths = RW~,R/data

• e.g. Full access to home directory, deny hidden files:
 – RestrictPaths = RW~,N~/.*
Enabling sharing on an endpoint

- In config file, set `Sharing=True`
- Run `globus-connect-server-setup`
- Use the CLI to flag as managed endpoint (also configurable via the web app)

* Note: Creation of shared endpoints requires a Globus subscription for the managed endpoint
Limit sharing to specific accounts

- SharingUsersAllow =
- SharingGroupsAllow =
- SharingUsersDeny =
- SharingGroupsDeny =
Sharing Path Restriction

- Restrict paths where users can create shared endpoints
- Use `SharingRestrictPaths` to customize
 - Same syntax as `RestrictPaths`
- e.g. Full access to home directory, deny hidden files:
 - `SharingRestrictPaths = RW~,N~/.*`
- e.g. Full access to public folder under home directory:
 - `SharingRestrictPaths = RW~/public`
- e.g. Full access to `/proj`, read access to `/scratch`:
 - `SharingRestrictPaths = RW/proj,R/scratch`
Accessing Endpoints
Ports needed for Globus

• Inbound: 2811 (control channel)
• Inbound: 7512 (MyProxy), 443 (OAuth)
• Inbound: 50000-51000 (data channel)
• If restricting outbound connections, allow connections on:
 – 80, 2223 (used during install/config)
 – 50000-51000 (GridFTP data channel)
Endpoint activation using MyProxy

Default configuration (avoid if at all possible)
Endpoint activation using MyProxy OAuth

Best practice configuration
• Your Shibboleth server must release R&S attributes to CILogon—especially the ePPN attribute
• Local resource account names must match your institutional ID (InCommon ID)
• In /etc/globus-connect-server.conf set:
 AuthorizationMethod = CILogon
 CILogonIdentityProvider = <institution_listed_in_CILogon_IdP_list>
Managed endpoints and subscriptions
Subscription configuration

- **Subscription manager**
 - Create/upgrade managed endpoints
 - Requires Globus ID linked to Globus account

- **Management console permissions**
 - Independent of subscription manager
 - Map managed endpoint to Globus ID

- **Globus Plus group**
 - Subscription Manager is admin
 - Can grant admin rights to other members
Creating managed endpoints

• **Required** for sharing, management console, reporting, …

• Convert existing endpoint to managed via CLI (or web):

globus endpoint update --managed <endpt_uuid>

• Must be run by subscription manager

• **Important:** Re-run `endpoint update` _after deleting/re-creating endpoint_
Monitoring and managing Globus endpoint activity
Management console

• Monitor all transfers
• Pause/resume specific transfers
• Add pause conditions with various options
• Resume specific tasks overriding pause conditions
• Cancel tasks
• View sharing ACLs
Endpoint Roles

• **Administrator**: define endpoint and roles
• **Access Manager**: manage permissions
• **Activity Manager**: perform control tasks
• **Activity Monitor**: view activity
Demonstration: Management console
Endpoint Roles
Usage Reporting
...on performance
Balance: performance - reliability

- Network use parameters: concurrency, parallelism
- Maximum, Preferred values for each
- Transfer considers source and destination endpoint settings
 \[
 \min(\\
 \max(\text{preferred src, preferred dest}), \\
 \max \text{ src}, \\
 \max \text{ dest} \\
)
 \]
- Service limits, e.g. concurrent requests
Disk-to-Disk Throughput: ESnet Testing

- GridFTP (4 streams)
- GridFTP (1 stream)
- sftp
- scp (w/HPN)
- scp

Disk-to-Disk Throughput (Mbps)

- Berkeley, CA to Argonne, IL (RTT: 53 ms, Capacity: 10Gbps)
- scp is 24x slower than GridFTP on this path
- >1 Gbps (125 MB/s) disk-to-disk requires RAID array

Source: ESnet (2016)

69
Deployment Scenarios
Best practice network configuration

* Please see TCP ports reference: https://docs.globus.org/resource-provider-guide/#open-tcp-ports_section
Multi-endpoint configuration

Data Transfer Node

POSIX DSI

~/
~/scratch

ext*
XFS
ZFS
Multi-endpoint configuration

Data Transfer Node

~/.projects

ext*, XFS, ZFS

~/.scratch

GPFS, Lustre

POSIX, DSI
Multi-endpoint configuration

Data Transfer Node

- POSIX DSI
- Spectra BlackPearl DSI

- ~/projects
- ~/scratch
- ~/archive
- ext*
- ZFS
- GPFS
- Lustre
Multi-endpoint configuration

Data Transfer Node

- POSIX DSI
- Spectra BlackPearl DSI
- Amazon S3 DSI

Mount Points:
- ext*, XFS, ZFS
- ~/scratch
- ~/projects
- ~/archive
- ~/vault

Storage Options:
- Amazon S3 Bucket
- Amazon S3
- GPFS Lustre

Transfer Files:
- Multi-endpoint configuration
Deploying a premium connector gateway
Other Deployment Options
Distributing Globus Connect Server components
Example: Two-node DTN

On “primary” DTN node (34.20.29.57):
/etc/globus-connect-server.conf
[Endpoint] Name = globus_dtn
[MyProxy] Server = 34.20.29.57

On other DTN nodes:
/etc/globus-connect-server.conf
[Endpoint] Name = globus_dtn
[MyProxy] Server = 34.20.29.57
Open Discussion