Advanced Photon Source
Data Management

S. Veseli, N. Schwarz, C. Schmitz (SDM/XSD)
R. Sersted, D. Wallis (IT/AES)
Growing Beamline Data Needs

- X-ray detector capabilities are constantly improving: bigger frames, higher frame rates => more raw data
- APS Upgrade: Higher brightness => more x-rays can be focused onto a smaller area => more raw data in greater detail and less time

- APS 1ID:
 - Today: 4x Hydra GE detector, 8MB frame, 8 fps => 256MB/s data rate (1TB/hr)
 - Production Data Rates (including overhead, on a good week): 10TB/day, 60TB/week
 - Near future (1-3 years): 2x 2923 Dexela (or similar), 23MB frame, 26 fps => 1.2GB/s data rate
 - Near future: Pilatus 2M (or similar/larger), 9.5MB frame, 250 fps => 2.3GB/s data rate

- APS 8IDI:
 - 2010-2016: ANL/LBL FCCD, 2MB frame, 100fps, compressed in real-time with 10% non-zero pixels on the average => about 200MB/s data rate
 - 2016-Today: Lambda 750K, 1.5MB frame, about 10% non-zero pixels, 2000 fps => about 300 MB/s data rate
 - Production Data Rates: 8-10 TB/week (max), 1-2TB/week (average)
 - Future: research on VIPIC (>1MHz frame rate) and UFXC (50 kHz frame rate)
APS Data Management

- Specific data management needs typically vary from beamline-to-beamline, mostly depending upon the types of detectors, X-ray techniques, and data processing tools in use.
- However, most of the data management requirements are related to a set of tasks common to all beamlines:
 - Storage area management (e.g. movement of acquired data from local storage to a more permanent location, data archival, etc.)
 - Enabling users and applications to easily find and access data (metadata and replica catalogs, remote data access tools)
 - Facilitating data processing and analysis with automated or user-initiated processing workflows
- APS Data Management (DM) project strives to help with these tasks.
How Does Globus Fit In?

- Globus Connect Server: provides remote data access to APS on-site storage (via the aps#data endpoint)
- Globus MyProxy OAuth Server: handles aps#data endpoint authentication
- GridFTP servers and clients: used by DM software for internal data transfers between beamline (local) storage and APS on-site storage, for transfers between local storage and HPC resources, etc.
 - Issue: Support for Open Source Globus Toolkit ended in early 2018
Services

- Site Services:
 - DM Database (PostgreSQL)
 - Storage Management Service
 - Web Portal
 - Automated user account synchronization utilities

- Station (Beamline Deployment) Services:
 - Data Acquisition Service
 - Metadata Catalog
 - Processing Service

- All services are available via REST interfaces
Monitoring

- Every DM service has a set of monitoring interfaces that enable external applications to find out about its state.
- These are used by the custom Nagios plugins that provide up-to-date information about the health of the DM station deployments.
User Interfaces

- Web browser access to DM Web Portal, Nagios web pages, beamline Metadata Catalog, and Globus Online (for remote data access)
- Python REST services are accessible via DM Python and Java APIs
- Processing Service provides 0MQ interfaces
- Extensive set of command line tools
 - Built on top of Python APIs
 - Session based
 - Fully scriptable
 - Online usage documentation (accessible via the -h|--help options)
- DM Station GUI (C. Schmitz)
 - Implemented in PyQt
 - Uses Python REST APIs
 - Easiest way to start using the system
System Usage

- December 2016: 5 beamline deployments, 250TB of storage space used
- March 2018: 21 beamline deployments, close to 1PB of storage space used
- Three month average growth of storage space used: 75TB/month
- We are currently using more than 75% of available storage space
- Assuming 75TB/month increase, we have 3-4 months before we run out of space
System Usage: Processing @ 8-ID-I (S. Narayanan)

- 8IDI uses X-ray Photon Correlation Spectroscopy technique (XPCS) for the studies of equilibrium fluctuations and fluctuations about the evolution to equilibrium in condensed matter in the Small-Angle X-ray Scattering (SAXS) geometry.
- SPEC software is used for instrument control and data acquisition.
- For every raw data file SPEC scripts can start DM processing job based on one of the implemented workflows.
- Batch processing workflow:
 1) Run a custom shell script to prepare processing environment.
 2) Copy raw data file to APS HPC cluster using GridFTP (the `globus-url-copy` command).
 3) Append XPCS metadata to the data file by running a custom 8-ID-I utility.
 4) Submit a processing job to the SGE batch scheduler via the `qsub` command. This job runs a custom 8-ID-I processing executable.
 5) Monitor batch job by running a shell script that interacts with SGE via the `qacct` command.
 6) Copy resulting output file into designated beamline storage area using GridFTP (the `globus-url-copy` command).
- Jobs are monitored via static web pages generated by a cron job running DM utilities.
Future Plans

- Develop Data Acquisition Service plugins that handle integration with external cataloging and data publishing systems (DOE Data Explorer, Materials Data Facility)
- Storage hardware replacement (purchase approved recently)
- Enable beamline managers to organize their experiment data in storage in a manner that best fits their beamline
- Further develop functionality offered in the DM Station GUI:
 - Improve file metadata and collection views
 - Add workflow and processing job management capabilities
- Enhance DM system monitoring infrastructure:
 - Develop service capabilities for self-diagnosing error or warning conditions and issuing alarms.
 - Improve support for measuring performance (e.g., data transfer rates, file processing rates, etc.)
- Further develop beamline management functionality available in the DM Web Portal
- Develop standard set of workflow definitions that can be reused on different beamlines for automating processing pipelines (need use cases)
- Develop policy engine for automated management of experiment data in storage, archiving of old data, etc.
- Improve documentation, write user guide
- New beamline deployments?
- Archival system?
Conclusions

- The DM system has grown significantly over the last couple of years, in terms of both its usage and capabilities.
- The software can be customized and extended to serve individual beamline needs related to data management.
- In particular, it can be used to fully automate data acquisition and processing pipelines.

Acknowledgements

- APS IT group (R. Sersted and D. Wallis) for their work on building and maintaining the APS On-site Storage and virtual machines used to host beamline DM services.
- APS IS group (F. Lacap and Y. Huang) for their help and cooperation with accessing APS databases.
- APS SDM group (B. Frosik and A. Glowacki) for many useful discussions.
- APS 1-ID (J.-S. Park and P. Kenesei) and 8-ID-I (S. Narayanan) beamlines for their patience, support and help with system testing and troubleshooting since the early prototype versions.
- All DM users.
Additional Slides
Data Management Challenges?

- How do we organize data?
- Where do we store data?
- How do we store data?
- Do we store all data?
- How do we find data?
- How do we access data?
- How do we manage stored data?
- How can we ensure data integrity?
- Can we automate data acquisition and processing pipelines?
- What can we do about user data analysis and processing?
- ...
A Bit Of History

- 2013: Tao Fusion project (LDRD) acquired XSTOR storage (250 TB)
- September 2014: APS Data Management project started
 - Goal: provide APS users with means to easily access their data remotely using Globus Online
- October 2015: First successful software deployment at 6IDD (D. Robinson)

- January 2017: Transition to DDN storage (1.5PB) with high-performance GPFS file system, data redundancy, and 2x10Gbps network links
- March 2018: New VM cluster used exclusively for DM virtual machines
 - Total of 512GB RAM, 144 CPU cores (72x2 due to hyper-threading), 2x10Gbps network links
Site Services

- **DM Database (PostgreSQL)**
 - Maintains information about users, experiments, and beamline deployments

- **Storage Management Service (Python, CherryPy, SQLAlchemy)**
 - Runs on the storage head node
 - Provides experiment management services (via REST interfaces)
 - Interacts with LDAP and APS Databases
 - Controls storage file system permissions, which enables data access for remote users

- **Web Portal (Java EE Application, Glassfish, JPA, JSF, Primefaces)**
 - Experiment management
 - Support for beamline deployments

- **Automated utilities for synchronizing DM user information with APS User Database**
Station Services

- Each beamline deployment (“DM Station”) includes several Python services accessible via REST interfaces: DAQ Service, Metadata Catalog and Processing Service

- Data Acquisition Service
 - Responsible for data uploads and for monitoring local file storage
 - Customizable, plugin-based processing framework
 - Plugins handle file transfers, metadata cataloging, interaction with other services

- Metadata Catalog (MongoDB)
 - Metadata are arbitrary key/value pairs
 - Each experiment has its own file metadata collection
 - File metadata can be retrieved using command line or API tools, DM Station GUI, or via the Mongo Express application
Station Services

- Processing Service provides support for managing user-defined workflows, as well as for submitting and monitoring processing jobs based on those workflows

- DM workflow is a collection of processing steps executed in order:
 - Workflow definitions are described as Python dictionaries
 - Each processing step must be associated with an (arbitrary) executable
 - Support for input/output variables
 - Processing steps are automatically parallelized if possible

- Processing Service can be used either standalone, or together with other DM Station services in support of fully automated beamline data acquisition and processing pipelines
Software Installation

- Each beamline at APS has its own Data Management software installation visible to all beamline machines.
- Deployment area contains DM software, support software packages, beamline databases, configuration files, various runtime and log files.
- All beamlines are fully independent of each other, which works well in the APS environment (beamline machines typically have different maintenance cycles).
- The DM software has fully scripted installation, upgrade, and deployment testing processes, which reduces to a minimum maintenance overhead due to independent beamline software installations.
- The DM services typically run on a designated beamline server machine, which can be either virtual or physical (VMs are preferred).
- Services are controlled via a standard set of control scripts suitable for the RHEL operating system used at APS.
- Typically, beamline staff has no involvement with DM software installation and maintenance.
Support

- Official “APS Data Distribution System” support policy:

 “Although no guarantees are made as to the system’s availability, problems are addressed as soon as possible on a best-effort basis.”

- Two email lists:
 - DM Users mailing list (dm-users@aps.anl.gov) is used for announcing new software releases, system outages, etc.
 - DM Admin mailing list (dm-admin@aps.anl.gov) can be used for system inquiries
System Usage: APSU MM Data (A. Jain)

- APSU uses Component Database (CDB) for identifying and tracking components needed to build the new facility.
- APSU Magnetic Measurements (MM) software works with and creates many different types of files: various definition/configuration files, measurement and analysis files, scripts, raw measurement data, PV data, processed data, log files,...
- Over 1K magnets, each will require multiple measurements => MM software will generate large amounts of data and numerous data files.

DM data upload tools will associate MM experiment with corresponding magnet QR ID in CDB.

During the DM data upload, each MM data file will be processed as follows:
- Metadata plugin stores file metadata in the APSU DM metadata database.
- CDB plugin adds file item to CDB, and also adds file metadata as item’s property.

After the DM data upload, MM experiment item views on the CDB web portal contain links to corresponding magnet, allow downloading experiment files, etc. (CDB work: D. Jarosz)