
Building on the Globus Python SDK

Stephen Rosen

April 11, 2017



SDK Overview

The Globus SDK is a client-side library which provides language
bindings for entities and methods available via web APIs.

In principle, an SDK could be built for any language. Today, we
only support Python. (Hence references to the “Python SDK”)
Everything in this presentation would apply to SDKs for other
languages. They only have to maintain the same basic design.



SDK Overview

The Globus SDK is a client-side library which provides language
bindings for entities and methods available via web APIs.
In principle, an SDK could be built for any language. Today, we
only support Python. (Hence references to the “Python SDK”)
Everything in this presentation would apply to SDKs for other
languages. They only have to maintain the same basic design.



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.

The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



How is the SDK Organized

Making API resources native parts of a language requires some
way of modeling those resources in that language.
The SDK tries to maintain a very simple, class-based model for
interacting with the service. Specifically:

I An adapter class for each API. e.g. TransferClient

I Authorization objects which handle API authorization, e.g.
RefreshTokenAuthorizer

I API Responses as GlobusResponse objects

I Always allow access to verbatim API response data, usually as
Python dicts

I Contain the HTTP interface without concealing it – i.e. throw
Python Exceptions, but attach http status to them, etc



Why Does This Model Matter?

Why am I even up here, in front of you, talking about these
internal minutae of this library?

This model is extensible, the objects are composable, and it is a
viable basis for building tools against APIs of your own which
authenticate with Globus Auth.
All that’s necessary to support a new API is a new Client class to
act as an adapter.



Why Does This Model Matter?

Why am I even up here, in front of you, talking about these
internal minutae of this library?
This model is extensible, the objects are composable, and it is a
viable basis for building tools against APIs of your own which
authenticate with Globus Auth.

All that’s necessary to support a new API is a new Client class to
act as an adapter.



Why Does This Model Matter?

Why am I even up here, in front of you, talking about these
internal minutae of this library?
This model is extensible, the objects are composable, and it is a
viable basis for building tools against APIs of your own which
authenticate with Globus Auth.
All that’s necessary to support a new API is a new Client class to
act as an adapter.



Is This Going to Get Technical? I’m Getting Woozy!

Please take good care of yourselves and drink lots of water.

I’m going to get fairly technical in content here. You are not
expected to be Python experts – please just think about what
kinds of usage we’re enabling if you wish to dig in.
Even if you are comfortable with the content, the focus is not only
on How we’re doing things, but also on What we’re trying to do.
Id est, let’s make programming with Globus (and maybe with your
API too!) easy.
Let’s make interactive experimentation with these APIs a real
possibility, and a source of joy.



Is This Going to Get Technical? I’m Getting Woozy!

I’m going to get fairly technical in content here. You are not
expected to be Python experts – please just think about what
kinds of usage we’re enabling if you wish to dig in.
Even if you are comfortable with the content, the focus is not only
on How we’re doing things, but also on What we’re trying to do.
Id est, let’s make programming with Globus (and maybe with your
API too!) easy.
Let’s make interactive experimentation with these APIs a real
possibility, and a source of joy.



Is This Going to Get Technical? I’m Getting Woozy!

I’m going to get fairly technical in content here. You are not
expected to be Python experts – please just think about what
kinds of usage we’re enabling if you wish to dig in.

Even if you are comfortable with the content, the focus is not only
on How we’re doing things, but also on What we’re trying to do.
Id est, let’s make programming with Globus (and maybe with your
API too!) easy.
Let’s make interactive experimentation with these APIs a real
possibility, and a source of joy.



Is This Going to Get Technical? I’m Getting Woozy!

I’m going to get fairly technical in content here. You are not
expected to be Python experts – please just think about what
kinds of usage we’re enabling if you wish to dig in.
Even if you are comfortable with the content, the focus is not only
on How we’re doing things, but also on What we’re trying to do.
Id est, let’s make programming with Globus (and maybe with your
API too!) easy.

Let’s make interactive experimentation with these APIs a real
possibility, and a source of joy.



Is This Going to Get Technical? I’m Getting Woozy!

I’m going to get fairly technical in content here. You are not
expected to be Python experts – please just think about what
kinds of usage we’re enabling if you wish to dig in.
Even if you are comfortable with the content, the focus is not only
on How we’re doing things, but also on What we’re trying to do.
Id est, let’s make programming with Globus (and maybe with your
API too!) easy.
Let’s make interactive experimentation with these APIs a real
possibility, and a source of joy.



The Simplest Possible Example

To start with, let’s consider the simplest possible form of a search
API. There is one, and only one, call available:

GET /search?q=hello

against the API at search.example.com.
What does the client for this API look like?



The Simplest Possible Example

To start with, let’s consider the simplest possible form of a search
API. There is one, and only one, call available:

GET /search?q=hello

against the API at search.example.com.

What does the client for this API look like?



The Simplest Possible Example

To start with, let’s consider the simplest possible form of a search
API. There is one, and only one, call available:

GET /search?q=hello

against the API at search.example.com.
What does the client for this API look like?



The Simplest Possible Example (cont.)

GET/search?q = hello against search.example.com

from globus_sdk.base import BaseClient

class SearchClient(BaseClient):

def __init__(self , *args , ** kwargs):

super(SearchClient , self).__init__(self , "search", *args , ** kwargs)

self.base_url = "https :// search.example.com"

def search(self , q):

return self.get("/ search", params ={"q": q})

And one could use it as in

client = SearchClient ()

client.search (" hello")



The Simplest Possible Example (cont.)

GET/search?q = hello against search.example.com

from globus_sdk.base import BaseClient

class SearchClient(BaseClient):

def __init__(self , *args , ** kwargs):

super(SearchClient , self).__init__(self , "search", *args , ** kwargs)

self.base_url = "https :// search.example.com"

def search(self , q):

return self.get("/ search", params ={"q": q})

And one could use it as in

client = SearchClient ()

client.search (" hello")



The Simplest Possible Example (cont.)

GET/search?q = hello against search.example.com

from globus_sdk.base import BaseClient

class SearchClient(BaseClient):

def __init__(self , *args , ** kwargs):

super(SearchClient , self).__init__(self , "search", *args , ** kwargs)

self.base_url = "https :// search.example.com"

def search(self , q):

return self.get("/ search", params ={"q": q})

And one could use it as in

client = SearchClient ()

client.search (" hello")



What About Authorization

Yeah...
What about authorization?
Well, out of the box your brand new client will support it just fine.
Assuming you have some tokens from doing an authentication
flow, then...

from globus_sdk import RefreshTokenAuthorizer

# skip the details on the authorizer for now

client = SearchClient(authorizer=RefreshTokenAuthorizer (...))

client.search ("hello , but authenticated ")



What About Authorization

Yeah...

What about authorization?
Well, out of the box your brand new client will support it just fine.
Assuming you have some tokens from doing an authentication
flow, then...

from globus_sdk import RefreshTokenAuthorizer

# skip the details on the authorizer for now

client = SearchClient(authorizer=RefreshTokenAuthorizer (...))

client.search ("hello , but authenticated ")



What About Authorization

Yeah...
What about authorization?

Well, out of the box your brand new client will support it just fine.
Assuming you have some tokens from doing an authentication
flow, then...

from globus_sdk import RefreshTokenAuthorizer

# skip the details on the authorizer for now

client = SearchClient(authorizer=RefreshTokenAuthorizer (...))

client.search ("hello , but authenticated ")



What About Authorization

Yeah...
What about authorization?
Well, out of the box your brand new client will support it just fine.
Assuming you have some tokens from doing an authentication
flow, then...

from globus_sdk import RefreshTokenAuthorizer

# skip the details on the authorizer for now

client = SearchClient(authorizer=RefreshTokenAuthorizer (...))

client.search ("hello , but authenticated ")



What About Authorization

Yeah...
What about authorization?
Well, out of the box your brand new client will support it just fine.
Assuming you have some tokens from doing an authentication
flow, then...

from globus_sdk import RefreshTokenAuthorizer

# skip the details on the authorizer for now

client = SearchClient(authorizer=RefreshTokenAuthorizer (...))

client.search ("hello , but authenticated ")



Authentication for your API

Although authorizing access once a login flow is complete is pretty
simple, getting that done requires a few steps. Specifically, you
need

I your API registered in Globus as a Resource Server

I at least one, possibly more than one, Scope for your Resource
Server

I a client application – a consumer of your API – registered in
Globus, with or without credentials

I the user must complete a login flow, via your client
application definition, authorizing it to access your API on his
or her behalf

A full discussion of all – perhaps even of any – of these is beyond
the scope of this talk.



Authentication for your API

Although authorizing access once a login flow is complete is pretty
simple, getting that done requires a few steps. Specifically, you
need

I your API registered in Globus as a Resource Server

I at least one, possibly more than one, Scope for your Resource
Server

I a client application – a consumer of your API – registered in
Globus, with or without credentials

I the user must complete a login flow, via your client
application definition, authorizing it to access your API on his
or her behalf

A full discussion of all – perhaps even of any – of these is beyond
the scope of this talk.



Authentication for your API

Although authorizing access once a login flow is complete is pretty
simple, getting that done requires a few steps. Specifically, you
need

I your API registered in Globus as a Resource Server

I at least one, possibly more than one, Scope for your Resource
Server

I a client application – a consumer of your API – registered in
Globus, with or without credentials

I the user must complete a login flow, via your client
application definition, authorizing it to access your API on his
or her behalf

A full discussion of all – perhaps even of any – of these is beyond
the scope of this talk.



Authentication for your API

Although authorizing access once a login flow is complete is pretty
simple, getting that done requires a few steps. Specifically, you
need

I your API registered in Globus as a Resource Server

I at least one, possibly more than one, Scope for your Resource
Server

I a client application – a consumer of your API – registered in
Globus, with or without credentials

I the user must complete a login flow, via your client
application definition, authorizing it to access your API on his
or her behalf

A full discussion of all – perhaps even of any – of these is beyond
the scope of this talk.



Authentication for your API

Although authorizing access once a login flow is complete is pretty
simple, getting that done requires a few steps. Specifically, you
need

I your API registered in Globus as a Resource Server

I at least one, possibly more than one, Scope for your Resource
Server

I a client application – a consumer of your API – registered in
Globus, with or without credentials

I the user must complete a login flow, via your client
application definition, authorizing it to access your API on his
or her behalf

A full discussion of all – perhaps even of any – of these is beyond
the scope of this talk.



Authentication for your API

Although authorizing access once a login flow is complete is pretty
simple, getting that done requires a few steps. Specifically, you
need

I your API registered in Globus as a Resource Server

I at least one, possibly more than one, Scope for your Resource
Server

I a client application – a consumer of your API – registered in
Globus, with or without credentials

I the user must complete a login flow, via your client
application definition, authorizing it to access your API on his
or her behalf

A full discussion of all – perhaps even of any – of these is beyond
the scope of this talk.



Customizing Error and Response Types

If it’s your API, you may very well have your own standards and
conventions for error formats. If your API is similar enough to
Globus APIs, maybe you can make do with the default error
handler.

You may want to do more sophisticated parsing of your errors.
Maybe your errors always have a “reason” field, or a “request id”
for logging, by way of example.
The same basic principle may apply to response formats – perhaps
your Search API always sends back its results in an array named
“hits”.



Customizing Error and Response Types

If it’s your API, you may very well have your own standards and
conventions for error formats. If your API is similar enough to
Globus APIs, maybe you can make do with the default error
handler.
You may want to do more sophisticated parsing of your errors.
Maybe your errors always have a “reason” field, or a “request id”
for logging, by way of example.

The same basic principle may apply to response formats – perhaps
your Search API always sends back its results in an array named
“hits”.



Customizing Error and Response Types

If it’s your API, you may very well have your own standards and
conventions for error formats. If your API is similar enough to
Globus APIs, maybe you can make do with the default error
handler.
You may want to do more sophisticated parsing of your errors.
Maybe your errors always have a “reason” field, or a “request id”
for logging, by way of example.
The same basic principle may apply to response formats – perhaps
your Search API always sends back its results in an array named
“hits”.



Custom Response Class

from globus_sdk import GlobusHTTPResponse

class SearchAPIResponse(GlobusHTTPResponse):

""" Assume (parsed) JSON response data , handled by GlobusHTTPResponse ""

def __iter__(self):

""" Search responses are iterable -- iterate over search hits array """

return iter(self["hits "])

Well, that doesn’t seem too hard. But it must be really tricky to
get it plugged correctly into the SearchClient right?



Custom Response Class

from globus_sdk import GlobusHTTPResponse

class SearchAPIResponse(GlobusHTTPResponse):

""" Assume (parsed) JSON response data , handled by GlobusHTTPResponse ""

def __iter__(self):

""" Search responses are iterable -- iterate over search hits array """

return iter(self["hits "])

Well, that doesn’t seem too hard. But it must be really tricky to
get it plugged correctly into the SearchClient right?



Custom Response Class (cont.)

...it must be really tricky to get it plugged correctly into the
SearchClient right?
Obviously, I wouldn’t ask such a question unless it’s really, really
easy.

There are two ways: is this a default class for all responses from
this API, via this client class? Or is this a specific response type
for this method?
Either

class SearchClient(BaseClient):

default_response_class = SearchAPIResponse

...

or

def search(self , q):

return self.get("/ search", params ={"q": q},

response_class=SearchAPIResponse)

depending on your needs.



Custom Response Class (cont.)

...it must be really tricky to get it plugged correctly into the
SearchClient right?
Obviously, I wouldn’t ask such a question unless it’s really, really
easy.
There are two ways: is this a default class for all responses from
this API, via this client class? Or is this a specific response type
for this method?

Either

class SearchClient(BaseClient):

default_response_class = SearchAPIResponse

...

or

def search(self , q):

return self.get("/ search", params ={"q": q},

response_class=SearchAPIResponse)

depending on your needs.



Custom Response Class (cont.)

...it must be really tricky to get it plugged correctly into the
SearchClient right?
Obviously, I wouldn’t ask such a question unless it’s really, really
easy.
There are two ways: is this a default class for all responses from
this API, via this client class? Or is this a specific response type
for this method?
Either

class SearchClient(BaseClient):

default_response_class = SearchAPIResponse

...

or

def search(self , q):

return self.get("/ search", params ={"q": q},

response_class=SearchAPIResponse)

depending on your needs.



Why would I customize responses?

Start with the basics:

class SearchAPIResponse(GlobusHTTPResponse):

def __iter__(self):

return iter(self["hits "])

class SearchClient(BaseClient):

...

def search(self , q):

return self.get("/ search", params ={"q": q},

response_class=SearchAPIResponse)

Now we can iterate over the “hits” in a response:

client = SearchClient ()

for hit in client.search ("hello "):

# some helper which does pretty printing

print_hit(hit)



Why would I customize responses?

Start with the basics:

class SearchAPIResponse(GlobusHTTPResponse):

def __iter__(self):

return iter(self["hits "])

class SearchClient(BaseClient):

...

def search(self , q):

return self.get("/ search", params ={"q": q},

response_class=SearchAPIResponse)

Now we can iterate over the “hits” in a response:

client = SearchClient ()

for hit in client.search ("hello "):

# some helper which does pretty printing

print_hit(hit)



Why would I customize responses?

Start with the basics:

class SearchAPIResponse(GlobusHTTPResponse):

def __iter__(self):

return iter(self["hits "])

class SearchClient(BaseClient):

...

def search(self , q):

return self.get("/ search", params ={"q": q},

response_class=SearchAPIResponse)

Now we can iterate over the “hits” in a response:

client = SearchClient ()

for hit in client.search ("hello "):

# some helper which does pretty printing

print_hit(hit)



Continuing to Custom Error Classes

Just as easily as you can set the response class for a client, you
can give it a custom error class. This may merely serve to ensure
that you have your own exception type, distinct from GlobusError ,
or it may do complex parsing.

Starting with

from globus_sdk import GlobusAPIError

class SearchAPIError(GlobusAPIError)

"""No special methods or parsing on this specific error type """

it’s easy enough to apply this class to a client class.
All that’s needed is

class SearchClient(BaseClient):

error_class = SearchAPIError

...



Continuing to Custom Error Classes

Just as easily as you can set the response class for a client, you
can give it a custom error class. This may merely serve to ensure
that you have your own exception type, distinct from GlobusError ,
or it may do complex parsing.
Starting with

from globus_sdk import GlobusAPIError

class SearchAPIError(GlobusAPIError)

"""No special methods or parsing on this specific error type """

it’s easy enough to apply this class to a client class.

All that’s needed is

class SearchClient(BaseClient):

error_class = SearchAPIError

...



Continuing to Custom Error Classes

Just as easily as you can set the response class for a client, you
can give it a custom error class. This may merely serve to ensure
that you have your own exception type, distinct from GlobusError ,
or it may do complex parsing.
Starting with

from globus_sdk import GlobusAPIError

class SearchAPIError(GlobusAPIError)

"""No special methods or parsing on this specific error type """

it’s easy enough to apply this class to a client class.
All that’s needed is

class SearchClient(BaseClient):

error_class = SearchAPIError

...



It’s My API, Why Would I Do ANY of This?

As we’ve started to build tools and products on top of the SDK
over this past year, some things have become obvious pain points.
The biggest, and most significant one to address is Authorization.
Reminder: Authentication is ”user logs in”, and Authorization is
”credential gets sent to API”
We provide GlobusAuthorizers which handle the messy
authorization activities of tracking tokens, watching their
expiration times, requesting renewed credentials, and generally
making things “just work”.
You can re-invent these wheels if you want, but perhaps, if you do,
maybe take a peek at our source... Like I said, Auth is hard.



It’s My API, Why Would I Do ANY of This?

Short answer? Auth is hard. Or, at the very least, messy.

As we’ve started to build tools and products on top of the SDK
over this past year, some things have become obvious pain points.
The biggest, and most significant one to address is Authorization.
Reminder: Authentication is ”user logs in”, and Authorization is
”credential gets sent to API”
We provide GlobusAuthorizers which handle the messy
authorization activities of tracking tokens, watching their
expiration times, requesting renewed credentials, and generally
making things “just work”.
You can re-invent these wheels if you want, but perhaps, if you do,
maybe take a peek at our source... Like I said, Auth is hard.



It’s My API, Why Would I Do ANY of This?

As we’ve started to build tools and products on top of the SDK
over this past year, some things have become obvious pain points.
The biggest, and most significant one to address is Authorization.

Reminder: Authentication is ”user logs in”, and Authorization is
”credential gets sent to API”
We provide GlobusAuthorizers which handle the messy
authorization activities of tracking tokens, watching their
expiration times, requesting renewed credentials, and generally
making things “just work”.
You can re-invent these wheels if you want, but perhaps, if you do,
maybe take a peek at our source... Like I said, Auth is hard.



It’s My API, Why Would I Do ANY of This?

As we’ve started to build tools and products on top of the SDK
over this past year, some things have become obvious pain points.
The biggest, and most significant one to address is Authorization.
Reminder: Authentication is ”user logs in”, and Authorization is
”credential gets sent to API”

We provide GlobusAuthorizers which handle the messy
authorization activities of tracking tokens, watching their
expiration times, requesting renewed credentials, and generally
making things “just work”.
You can re-invent these wheels if you want, but perhaps, if you do,
maybe take a peek at our source... Like I said, Auth is hard.



It’s My API, Why Would I Do ANY of This?

As we’ve started to build tools and products on top of the SDK
over this past year, some things have become obvious pain points.
The biggest, and most significant one to address is Authorization.
Reminder: Authentication is ”user logs in”, and Authorization is
”credential gets sent to API”
We provide GlobusAuthorizers which handle the messy
authorization activities of tracking tokens, watching their
expiration times, requesting renewed credentials, and generally
making things “just work”.

You can re-invent these wheels if you want, but perhaps, if you do,
maybe take a peek at our source... Like I said, Auth is hard.



It’s My API, Why Would I Do ANY of This?

As we’ve started to build tools and products on top of the SDK
over this past year, some things have become obvious pain points.
The biggest, and most significant one to address is Authorization.
Reminder: Authentication is ”user logs in”, and Authorization is
”credential gets sent to API”
We provide GlobusAuthorizers which handle the messy
authorization activities of tracking tokens, watching their
expiration times, requesting renewed credentials, and generally
making things “just work”.
You can re-invent these wheels if you want, but perhaps, if you do,
maybe take a peek at our source... Like I said, Auth is hard.



Proof of Concept? No!

We really are using this toolkit internally. Even as we work on the
new Search API, we need client-side tools and scripts.

That SearchClient from before? Eerily similar to a SearchClient we
really use.
When we first started sharing this library last year, it was just
beginning to grow beyond being a toy, a prototype, a proof of
concept. Today, we have enough confidence that we’re building
products on it. We’d like you all to have the confidence in us to do
the same.



Proof of Concept? No!

We really are using this toolkit internally. Even as we work on the
new Search API, we need client-side tools and scripts.
That SearchClient from before? Eerily similar to a SearchClient we
really use.

When we first started sharing this library last year, it was just
beginning to grow beyond being a toy, a prototype, a proof of
concept. Today, we have enough confidence that we’re building
products on it. We’d like you all to have the confidence in us to do
the same.



Proof of Concept? No!

We really are using this toolkit internally. Even as we work on the
new Search API, we need client-side tools and scripts.
That SearchClient from before? Eerily similar to a SearchClient we
really use.
When we first started sharing this library last year, it was just
beginning to grow beyond being a toy, a prototype, a proof of
concept. Today, we have enough confidence that we’re building
products on it. We’d like you all to have the confidence in us to do
the same.



I Already Use the SDK, and I Hate/Love It

Some of you are already using the SDK to start building
applications. There are probably many things more you want it to
do, plenty of things you like about it lots, and a handful which you
find unsatisfactory.

It can only be, maximally, as good as the feedback you give us.
Tell us what you like. Tell us what you don’t like.
Tell us the class names that you find annoying, the functions
whose signatures are too big, the helpers which you think are
missing, and tell us how it made one of your days – just one is
enough – a little bit better.
Say it on the listhost (developer-discuss@globus.org) and tell us in
GitHub issues (https://github.com/globus/globus-sdk-python).



I Already Use the SDK, and I Hate/Love It

Some of you are already using the SDK to start building
applications. There are probably many things more you want it to
do, plenty of things you like about it lots, and a handful which you
find unsatisfactory.
It can only be, maximally, as good as the feedback you give us.
Tell us what you like. Tell us what you don’t like.

Tell us the class names that you find annoying, the functions
whose signatures are too big, the helpers which you think are
missing, and tell us how it made one of your days – just one is
enough – a little bit better.
Say it on the listhost (developer-discuss@globus.org) and tell us in
GitHub issues (https://github.com/globus/globus-sdk-python).



I Already Use the SDK, and I Hate/Love It

Some of you are already using the SDK to start building
applications. There are probably many things more you want it to
do, plenty of things you like about it lots, and a handful which you
find unsatisfactory.
It can only be, maximally, as good as the feedback you give us.
Tell us what you like. Tell us what you don’t like.
Tell us the class names that you find annoying, the functions
whose signatures are too big, the helpers which you think are
missing, and tell us how it made one of your days – just one is
enough – a little bit better.
Say it on the listhost (developer-discuss@globus.org) and tell us in
GitHub issues (https://github.com/globus/globus-sdk-python).



Final Notes

I’d like to say a special thanks to everyone, both in and out of
Globus, who has made a commit, filed an issue, asked or answered
a question, or voiced an opinion.

Reminder: Give Us Your Feedback and Contributions

I Open GitHub issues and Pull Requests
(https://github.com/globus/globus-sdk-python/issues)

I Join the discussion developer-discuss@globus.org



Final Notes

I’d like to say a special thanks to everyone, both in and out of
Globus, who has made a commit, filed an issue, asked or answered
a question, or voiced an opinion.

Reminder: Give Us Your Feedback and Contributions

I Open GitHub issues and Pull Requests
(https://github.com/globus/globus-sdk-python/issues)

I Join the discussion developer-discuss@globus.org


