Data Portals

Eli Dart, Network Engineer
ESnet Science Engagement
Lawrence Berkeley National Laboratory

GlobusWorld
Chicago, IL
April 11, 2017
Overview

• Science DMZ and Data Portals

• This assumes you already have a Science DMZ
 – If you don’t have one, we can chat about how you might build one
 – If it would be helpful, I can talk to your systems and networking folks
 – Or check out the fasterdata knowledgebase:
 • http://fasterdata.es.net/science-dmz/
Science DMZ Design Pattern (Abstract)

- **Border Router**
 - 10G connection to WAN
 - 10GE connection to Enterprise Border Router/Firewall
 - Clean, High-bandwidth WAN path
 - Site / Campus access to Science DMZ resources
 - Per-service security policy control points

- **Science DMZ Switch/Router**
 - 10GE connection to Site / Campus LAN
 - High performance Data Transfer Node with high-speed storage
 - perfSONAR

- **Enterprise Border Router/Firewall**
 - 10GE connection to Science DMZ Switch/Router
 - perfSONAR

PerfSONAR

ESnet

Science DMZ

WAN

Site / Campus

LAN

High performance Data Transfer Node with high-speed storage

© 2015, Energy Sciences Network
HPC Center Data Path

Diagram showing the network paths:
- WAN
- Border Router
- Core Switch/Router
- Firewall
- Offices
- Supercomputer
- Parallel Filesystem
- Data Transfer Nodes
 - High Latency WAN Path
 - Low Latency LAN Path
Next Steps – Building On The Science DMZ

• Enhanced cyberinfrastructure substrate now exists
 – Wide area networks (ESnet, GEANT, Internet2, Regionals)
 – Science DMZs connected to those networks
 – DTNs in the Science DMZs

• What does the scientist see?
 – Scientist sees a science application
 • Data transfer
 • Data portal
 • Data analysis
 – Science applications are the user interface to networks and DMZs

• Large-scale data-intensive science requires that we build larger structures on top of those components
Science Data Portals

• Large repositories of scientific data
 – Climate data
 – Sky surveys (astronomy, cosmology)
 – Many others
 – Data search, browsing, access

• Many scientific data portals were designed 15+ years ago
 – Single-web-server design
 – Data browse/search, data access, user awareness all in a single system
 – All the data goes through the portal server
 • In many cases by design
 • E.g. embargo before publication (enforce access control)
Legacy Portal Design

- Very difficult to improve performance without architectural change
 - Software components all tangled together
 - Difficult to put the whole portal in a Science DMZ because of security
 - Even if you could put it in a DMZ, many components aren’t scalable
- What does architectural change mean?
Example of Architectural Change – CDN

- Let’s look at what Content Delivery Networks did for web applications
- CDNs are a well-deployed design pattern (Netflix, etc)
- What does a CDN do?
 - Store static content in a separate location from dynamic content
 - Complexity isn’t in the static content – it’s in the application dynamics
 - Web applications are complex, full-featured, and slow
 - Data service for static content is simple by comparison
 - Separation of application and data service allows each to be optimized
Classical Web Server Model

- Web browser fetches pages from web server
 - All content stored on the web server
 - Web applications run on the web server
 - Web server sends data to client browser over the network
- Perceived client performance changes with network conditions
 - Several problems in the general case
 - Latency increases time to page render
 - Packet loss + latency cause problems for large static objects
Solution: Place Large Static Objects Near Client

- CDN provides static content “close” to client
- Web server still manages complex behavior
- Latency goes down
 - Time to page render goes down
 - Static content performance goes up
- Load on web server goes down (no need to serve static content)
- Significant win for web application performance
Client Simply Sees Increased Performance

- Client doesn’t see the CDN as a separate thing
 - Web content is all still viewed in a browser
 - Browser fetches what the page tells it to fetch
 - Different content comes from different places
 - User doesn’t know/care
- CDNs provide an architectural solution to a performance problem
 - Not brute-force
 - Work smarter, not harder
Architectural Examination of Data Portals

• Common data portal functions (most portals have these)
 – Search/query/discovery
 – Data download method for data access
 – GUI for browsing by humans
 – API for machine access – ideally incorporates search/query + download

• Performance pain is primarily in the data handling piece
 – Rapid increase in data scale eclipsed legacy software stack capabilities
 – Portal servers often stuck in enterprise network

• Can we “disassemble” the portal and put the pieces back together better?
 – Use Science DMZ as a platform for the data piece
 – Avoid placing complex software in the Science DMZ
Legacy Portal Design

- **Border Router**
- **Firewall**

WAN to **Enterprise**

Portal Server

Filesysterm

Portal server applications:
- web server
- search
- database
- authentication
- data service

Browsing path
Query path
Data path
Next-Generation Portal Leverages Science DMZ

Portal server applications:
- web server
- search
- database
- authentication

Data Transfer Path
Portal Query/Browse Path

API DTNs (data access governed by portal)
Put The Data On Dedicated Infrastructure

• We have separated the data handling from the portal logic
• Portal is still its normal self, but enhanced
 – Portal GUI, database, search, etc. all function as they did before
 – Query returns pointers to data objects in the Science DMZ
 – Portal is now freed from ties to the data servers (run it on Amazon if you want!)
• Data handling is separate, and scalable
 – High-performance DTNs in the Science DMZ
 – Scale as much as you need to without modifying the portal software
• Outsource data handling to computing centers
 – Computing centers are set up for large-scale data
 – Let them handle the large-scale data, and let the portal do the orchestration of data placement
Scalability Example – Petascale DTN Project

March 2017
L380 Data Set

Data set: L380
Files: 19260
Directories: 211
Other files: 0
Total bytes: 4442781786482 (4.4T bytes)
Smallest file: 0 bytes (0 bytes)
Largest file: 11313896248 bytes (11G bytes)
Size distribution:
- 1 - 10 bytes: 7 files
- 10 - 100 bytes: 1 files
- 100 - 1K bytes: 59 files
- 1K - 10K bytes: 3170 files
- 10K - 100K bytes: 1560 files
- 100K - 1M bytes: 2817 files
- 1M - 10M bytes: 3901 files
- 10M - 100M bytes: 3800 files
- 100M - 1G bytes: 2295 files
- 1G - 10G bytes: 1647 files
- 10G - 100G bytes: 3 files
Links and Lists

- ESnet fasterdata knowledge base
 - http://fasterdata.es.net/
- Science DMZ paper
- Science DMZ email list
 - Send mail to sympa@lists.lbl.gov with subject "subscribe esnet-sciencedmz"
- perfSONAR
 - http://fasterdata.es.net/performance-testing/perfsonar/
 - http://www.perfsonar.net
- Globus
 - https://www.globus.org/
Thanks!

Eli Dart dart@es.net
Energy Sciences Network (ESnet)
Lawrence Berkeley National Laboratory

http://fasterdata.es.net/
http://my.es.net/
http://www.es.net/
Extra Slides
DTN Cluster Detail

Configure as DTN Cluster

"Sealed" DTNs (Globus only, no shell access)
DTN Cluster Design

• Configure all four DTNs as a single Globus endpoint
 – Globus has docs on how to do this

• Recent options for increased performance
 – Use additional parallel connections
 – Distribute transfers across multiple DTNs (Globus I/O Nodes)
 – Critical – only do this when all DTNs in the endpoint mount the same shared filesystem

• Use the Globus CLI command `endpoint-modify`
 – Use the `--network-use` option
 – Adjusts concurrency and parallelism