Installing and Managing Globus on Your Campus Storage Systems

Vas Vasiliadis vas@uchicago.edu

Useful links/"cheatsheet": globusworld.org/tutorial2016

Thank you to our sponsors!

...and Thank YOU!

5 major services

200PB transferred

35 Bn files processed

48,000 registered users

13
national labs
use Globus

10,000 active endpoints

10,000 active users/year

99.5% uptime

60+
institutional subscribers

1 PB

largest single transfer to date

3 months

longest continuously managed transfer

150

federated campus identities

Globus and the research data lifecycle

Instrument

Globus transfers files reliably, securely

Transfer

Researcher initiates transfer request; or requested automatically by script, science gateway

- SaaS → Web access; low operational costs
- Use storage system of your choice
- Access using your existing credentials

Compute Facility

Globus controls access to shared files on existing storage; no need to move files to cloud storage!

Curator reviews and approves: data set published on campus or other system

Publication

Repository

Share

3

Researcher selects files to share, selects user or group, and sets access permissions

Collaborator logs in to Globus and accesses shared files; no local

account required; download via Globus

Publish

Peers, collaborators search and discover datasets; transfer and

Discover

Researcher

share using Globus

Personal Computer

Globus enables...

Campus Bridging

...within and beyond campus boundaries

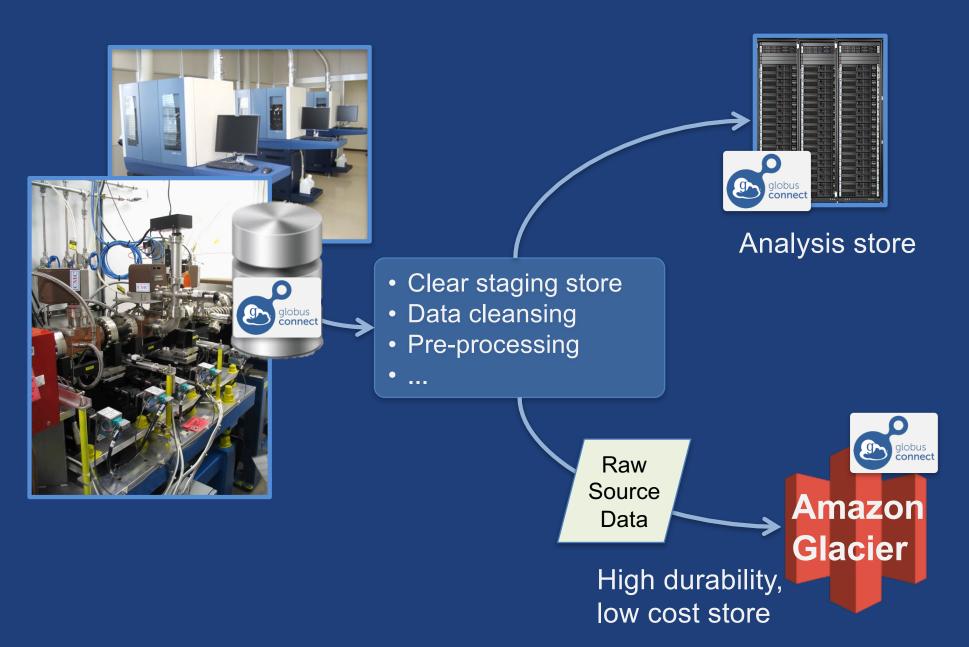
Bridge to campus HPC

Move datasets to campus research computing center

Move results to laptop, department, lab, ...

Bridge to national cyberinfrastructure

Move datasets to supercomputer, national facility



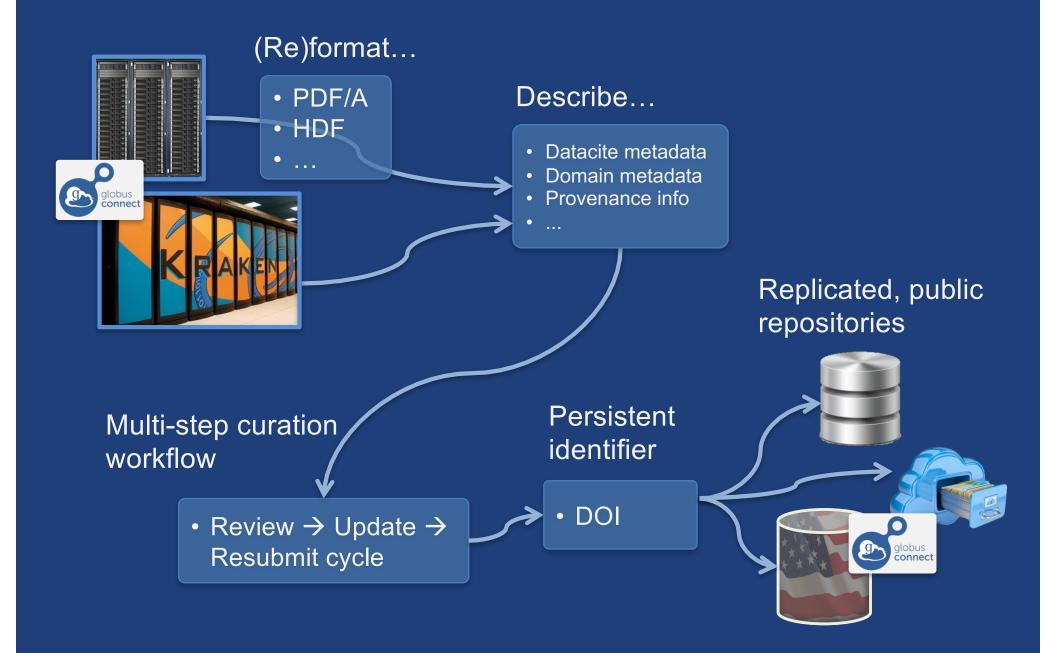
Move results to campus (...)

Bridge to instruments

Bridge to your collaborators

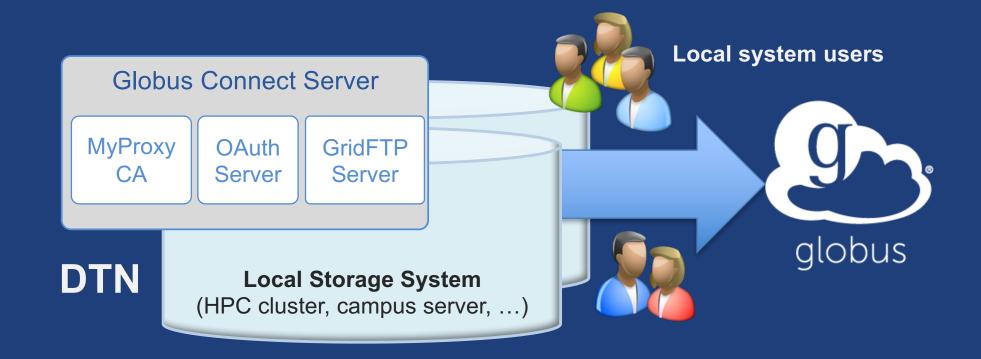
- Group management
- Share creation
- Permissions configuration

Local/Campus stores



Cloud stores

Bridge to community/public


Demonstration

Enabling your storage system: Globus Connect Server

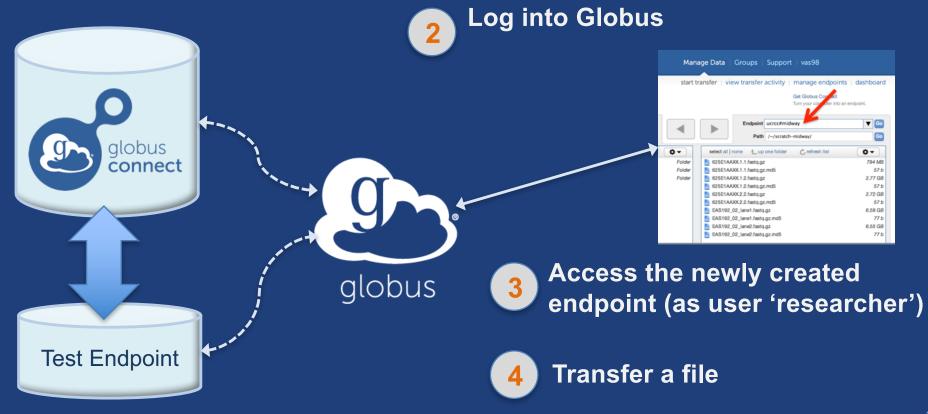
Globus Connect Server

- Create endpoint on practically any filesystem
- Enable access for all users with local accounts
- Native packages: RPMs and DEBs

- Creating a Globus endpoint on your storage system
- In this example, storage system = Amazon EC2 server
- Akin to what you would do on your DTN

Step 0: Create a Globus ID

- Installation and configuration of Globus Connect Server requires a Globus ID
- Go to globusid.org
- Click "create a Globus ID"



What we are going to do:

Install Globus Connect Server

- Access server as user "campusadmin"
- Update repo
- Install package
- Setup Globus Connect Server

- Create a Globus ID
 - Optional: associate it with your Globus account
- Get the DNS for your EC2 server
- Log in as user 'campusadmin':

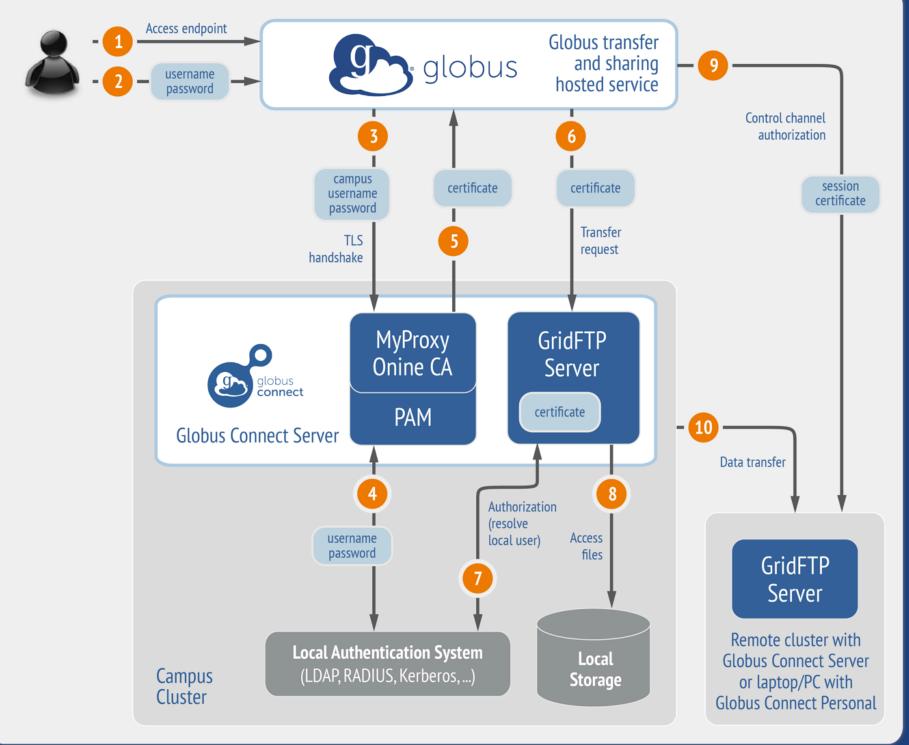
```
ssh campusadmin@<EC2_instance_IP_address>
(password: globus2016)
```

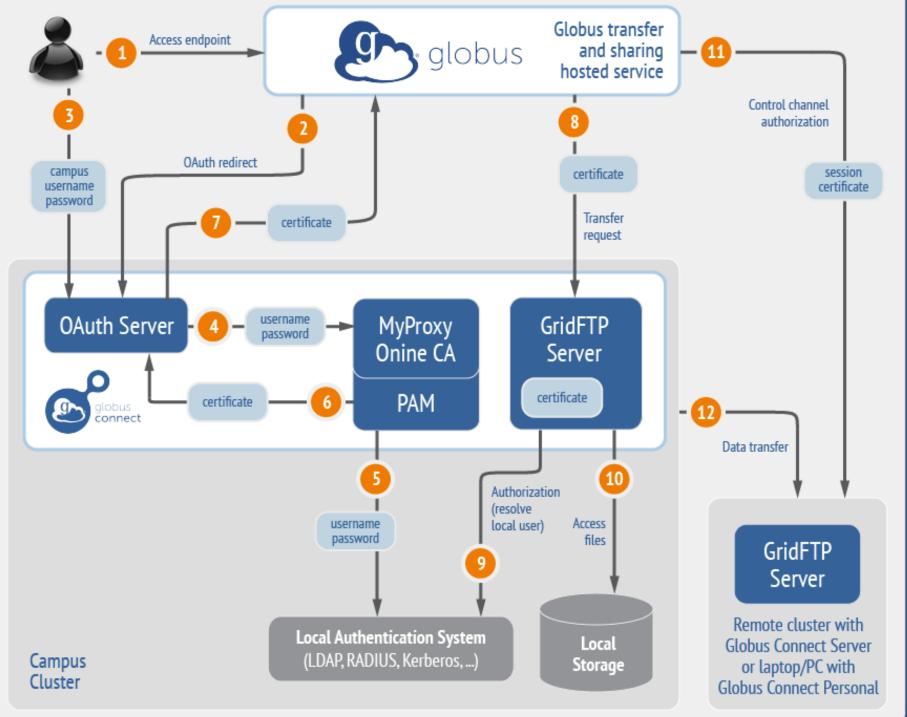
- NB: Please sudo su before continuing
 - User 'campusadmin' has sudo privileges

Step 3: Install Globus Connect Server

Cheatsheet: globusworld.org/tutorial2016

```
$ sudo su
$ curl -LOs http://toolkit.globus.org/ftppub/globus-
connect-server/globus-connect-server-
repo_latest_all.deb
$ dpkg -i globus-connect-server-repo_latest_all.deb
$ apt-get update
$ apt-get -y install globus-connect-server
$ globus-connect-server-setup
  Luse your Globus ID username/password when prompted
```


You have a working Globus endpoint!


Access the Globus endpoint

- Go to Manage Data -> Transfer Files
- Access the endpoint you just created
 - Search for your EC2 DNS name in the Endpoint field
 - Log in as user "researcher" (pwd: globus2016); you should see the user's home directory
- Transfer files between the ESnet Test endpoints and your endpoint

Ports needed for Globus

- Inbound: 2811 (control channel)
- Inbound: 7512 (MyProxy), 443 (OAuth)
- Inbound: 50000-51000 (data channel)
- If restricting outbound connections, allow connections from:
 - -80, 2223 (used during install/config)
 - 50000-51000 (GridFTP data channel)
- Futures: single-port GridFTP

Enable your storage system

- Access the service: globus.org/login
- Create a personal endpoint: globus.org/app/endpoints/create-gcp
- Create a server endpoint: docs.globus.org/resource-provider-guide
- Need help? support@globus.org
- Subscribe to help us make Globus self-sustaining: globus.org/subscriptions
- Follow us: @globusonline

Configuring Globus Connect Server

Configuration is a two-step process

- Configuration options specified in: /etc/globus-connect-server.conf
- To enable changes you must run: globus-connect-server-setup
- "Rinse and repeat"

Configuration file walkthrough

Structure based on .ini format

```
[Section]
Option
```

Commonly configured options:

```
Name
Public
RestrictedPaths
Sharing
SharingRestrictedPaths
IdentityMethod (CILogon, Oauth)
```


Exercise: Make your endpoint visible

- Set Public = true
- Run globus-connect-server-setup
- Edit endpoint attributes
 - Change the name to something useful, e.g. <your name> EC2 Endpoint
- Find your neighbor's endpoint
 - You can access it too ©

Enabling sharing on an endpoint

- Set Sharing = True
- Run globus-connect-server-setup
- Go to the Transfer Files page
- Select the endpoint
- Create shared endpoints and grant access to other Globus users*

* Note: Creation of shared endpoints requires a Globus subscription for the managed endpoint

Path Restriction

- **Default configuration:**
 - All paths allowed, access control handled by the OS
- Use RestrictPaths to customize
 - Specifies a comma separated list of full paths that clients may access
 - Each path may be prefixed by R (read) and/or W (write), or N (none) to explicitly deny access to a path
 - '~' for authenticated user's home directory, and * may be used for simple wildcard matching.
- e.g. Full access to home directory, read access to /data:
 - RestrictPaths = RW~,R/data
- e.g. Full access to home directory, deny hidden files:
 - RestrictPaths = RW~,N~/.*

Limit sharing to specific accounts

- SharingUsersAllow =
- SharingGroupsAllow =
- SharingUsersDeny =
- SharingGroupsDeny =

Sharing Path Restriction

- Restrict paths where users can create shared endpoints
- Use SharingRestrictPaths to customize
 - Same syntax as RestrictPaths
- e.g. Full access to home directory, deny hidden files:
 - SharingRestrictPaths = RW~,N~/.*
- e.g. Full access to public folder under home directory:
 - SharingRestrictPaths = RW~/public
- e.g. Full access to /proj, read access to /scratch:
 - SharingRestrictPaths = RW/proj,R/scratch

- Allow others to manage access to a shared endpoint
- Owner of shared endpoint can set role
- Assignable to user or group
- Common Use Case: Data distribution

Advanced Configuration

Using MyProxy OAuth server

MyProxy without OAuth

- Passwords flow via Globus to MyProxy server
- Globus does not store passwords
- Still a security concern for many campuses

Web-based endpoint activation

- Sites run MyProxy OAuth server or use CI Logon
- Globus gets short-term X.509 credential via MyProxy OAuth protocol

Single Sign-On with InCommon/CILogon

- Your Shibboleth server must release the ePPN attribute to CILogon
- Local resource account names must match institutional ID (InCommon ID)
- AuthorizationMethod = CILogon

Integrating your IdP

InCommon members

- Must release R&S attributes to CILogon
- Mapping uses ePPN; can use GridMap
 AuthorizationMethod = CILogon
 CILogonIdentityProvider =
 <institution_name_in_CILogon_IdP_list>

Non-members

- IdP must support OpenID Connect
- Requires Alternate IdP subscription
- Using an existing MyProxy server

Managed endpoints and subscriptions

Subscription configuration

Subscription manager

- Create/upgrade managed endpoints
- Requires Globus ID linked to Globus account

Management console permissions

- Independent of subscription manager
- Map managed endpoint to Globus ID

Globus Plus group

- Subscription Manager is admin
- Can grant admin rights to other members

Creating managed endpoints

- Required for sharing, management console, reporting, etc.
- Convert existing endpoint to managed:

endpoint-modify --managed-endpoint <endpoint_name>

- Must be run by subscription manager, using the Globus CLI
- Important: Re-run endpoint-modify after deleting/re-creating endpoint

Demonstration: Command Line Interface (CLI)

- 1. Add your SSH key to your Globus ID
 - Go to: globusid.org/keys
- 2. ssh <globusid>@cli.globusonline.org
- 3. Run help to see available commands
- 4. Start a transfer and check its status

Using the Management Console

- Monitor all transfers
- Pause/resume specific transfers
- Add pause conditions with various options
- Resume specific tasks overriding pause conditions
- Cancel tasks
- View sharing ACLs

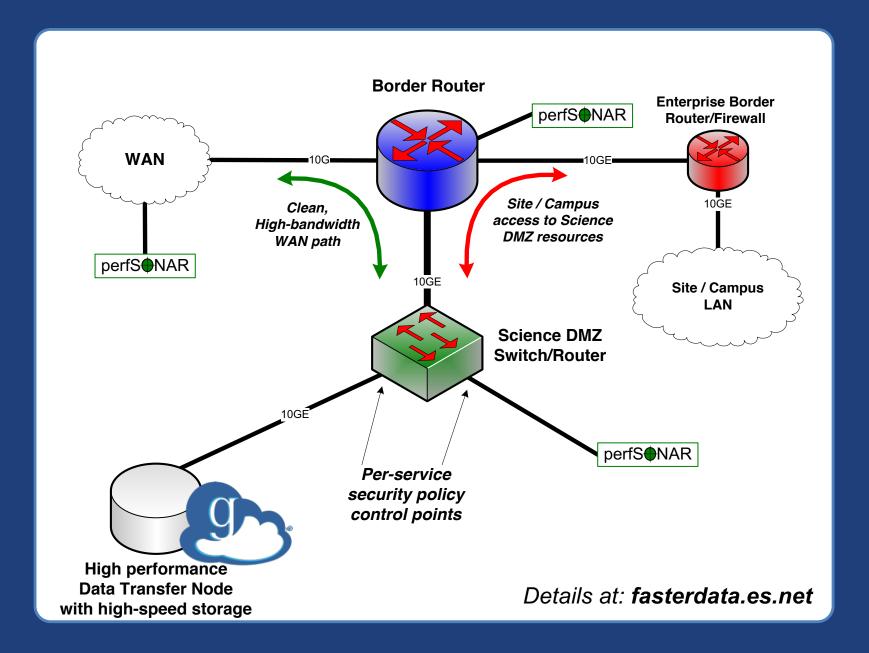
Demonstration: Management console

Optimizing transfer performance

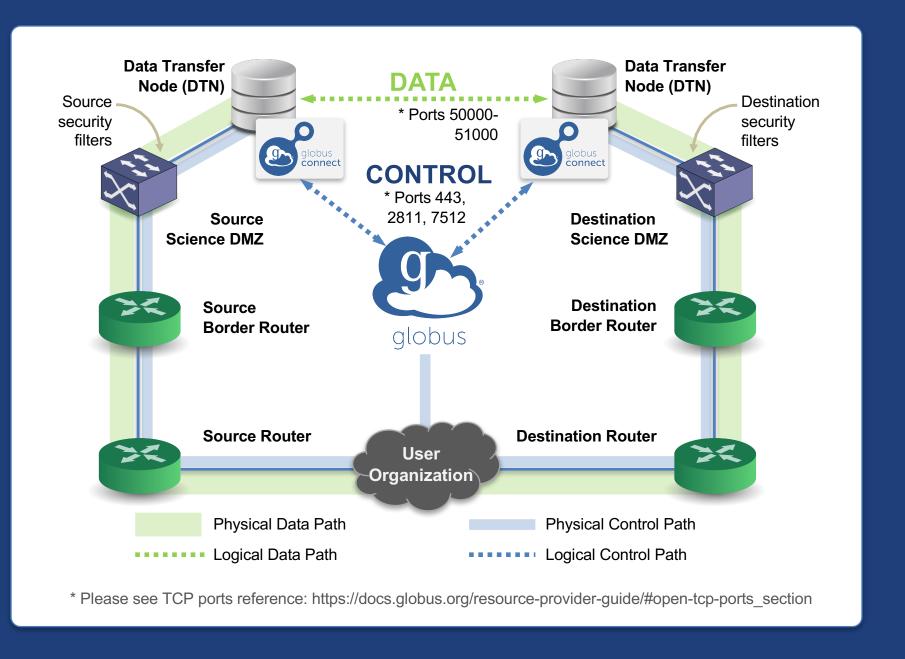
Balance: performance - reliability

- In-flight tuning based on transfer profile (#files, sizes)
- Request-specific overrides
 - Concurrency
 - Parallelism
- Endpoint-specific overrides; especially useful for multi-DTN deployments
- Service limits, e.g. concurrent requests

Network Use Parameters

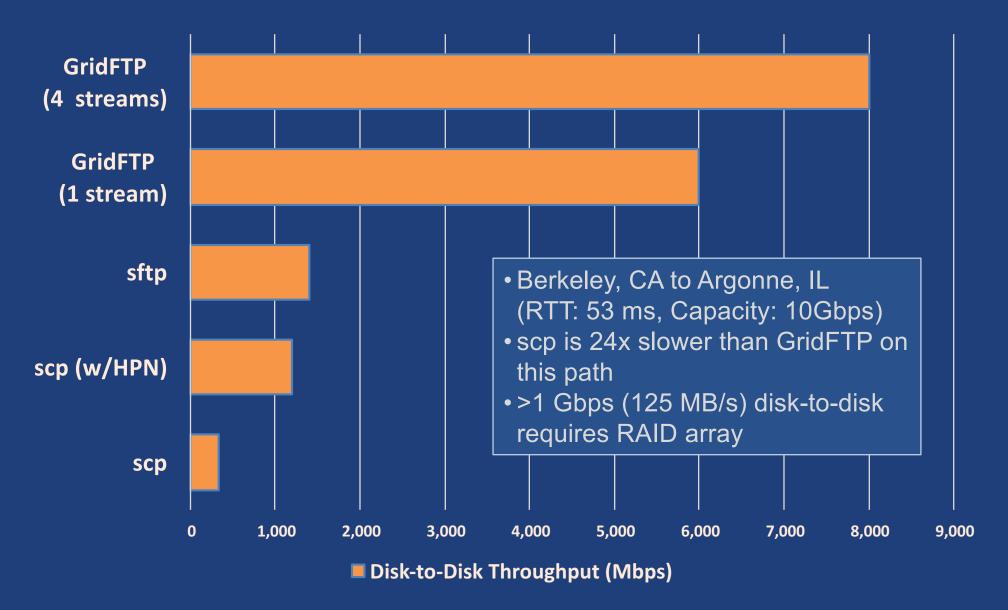

- Concurrency and parallelism configuration to tune transfers
- Maximum and Preferred
- Use values set for source and destination to determine parameters for a given transfer
- min (max (preferred src, preferred dest), max src, max dest)

- Separate control and data interfaces
- "DataInterface =" option in globusconnect-server-conf
- Common scenario: route data flows over Science DMZ link



Best-practice deployment

Network Paths - Illustrative



- 20x scp throughput (typical)
 - ->100x demonstrated
- On par/faster than UDP based tools (NASA JPL study and anecdotal)
- Capable of saturating "any" WAN link
 - Demonstrated 85Gbps sustained disk-to-disk
 - Typically require throttling for QoS

Disk-to-Disk Throughput

Source: ESnet (2016)

For the very brave...

Globus Network Manager

- Information from GridFTP to facilitate dynamic network changes
- Callbacks during GridFTP execution on **local DTN**
- Supplements information available via Globus transfer API

Globus Network Manager Callbacks

- Pre-listen (binding of socket)
- Post-listen
- Pre-accept/Pre-connect (no Data yet)
- Post-accept/Post-connect (data in flight)
- Pre-close
- Post-close

Network manager use cases

- Science DMZ Traffic Engineering
 - Use SDN to dynamically route data path
 - Control path uses traditional route
- Automated WAN bandwidth reservation
 - OSCARS, AL2S
- Note: All this requires custom code

Other Deployment Options

- Requiring encryption on an endpoint
 - User cannot override
 - Useful for "sensitive" data
- Globus uses OpenSSL cipher stack as currently configured on your DTN
- FIPS-140-2 compliance
 - Limit number of ciphers used by OpenSSL
 - https://access.redhat.com/solutions/137833

Distributing Globus Connect Server components

- Globus Connect Server components
 - globus-connect-server-io, -id, -web
- Default: -io and –id (no –web) on single server
- Common options
 - Multiple –io servers for load balancing, failover, and performance
 - No -id server, e.g. third-party IdP such as CILogon
 - id on separate server, e.g. non-DTN nodes
 - web on either –id server or separate server for OAuth interface

Setting up multiple –io servers

- Guidelines
 - Use the same .conf file on all servers
 - First install on the server running the –id component, then all others
- **Install Globus Connect Server on all servers** 1.
- 2. Edit .conf file on one of the servers and set [MyProxy] Server to the hostname of the server you want the -id component installed on
- Copy the configuration file to all servers **3.**
 - /etc/globus-connect-server.conf
- Run globus-connect-server-setup on the server running 4. the -id component
- Run globus-connect-server-setup on all other servers **5**.
- Repeat steps 2-5 as necessary to update configurations 6.

Discussion

Enable your storage system

- Signup: globus.org/signup
- Create endpoint: globus.org/globus-connectserver
- Need help? support.globus.org
- Subscribe to help us make Globus self-sustaining: globus.org/provider-plans
- Follow us: @globusonline