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Context

- How does genome variation affect
our risk of common diseases and
our response to therapies for these
diseases

« What variants?
« What mechanisms?

* Translating those discoveries to
patient care

- Paradigm for translation will involve “pre-
emptive” genotyping and sequencing



Discovery and Translation

* In discovery research, we seek
individual variants and aim to learn
the driving biology behind the
associations we detect

* For translation, we are often
interested in prediction

* Who will benefit from a particular drug
therapy?

* Who is at risk for an adverse event?

 Who is at risk for a disease we can
postpone, prevent, or alter risk for?



New in Genome Discovery

* Key variants

- ldentifying classes of functional variation
with strong enrichment among top
GWAS signals

 lIdentifying gene sets for which functional
variants enriched

* Integration
 Genome, transcriptome, SV, ...

- Key genes

- Mendelian disease genes may contribute
to more than just Mendelian disease



New in Genome Translation

- Large-scale prediction
* Polygenic prediction
* Other —omics; poly-omic prediction
 EMR event monitoring
- Patterns of care usage
* Crossing —omics prediction
with EMR event monitoring



Premise ...

Paradigms developed for Mendelian
diseases and rare adverse events are
inadequate for translation of genome
discoveries for common diseases
and common adverse event and
efficacy pharmaco-phenotypes



New in Genome Discovery

* Key variants

* ldentifying classes of functional variation
with strong enrichment among top
GWAS signals

* ldentifying gene sets for which functional
variants enriched



Classes of Functional Variants Enriched
in SNPs Associated with Common
Disease and Complex Human Traits

eQTLs — SNPs associated with mRNA
transcript levels

MmQTLs — SNPs associated with methylation
status at sites that are variably methylated
pQTLs — SNPs that are associated with
protein levels

MiRNA QTLs — SNPs associated with levels
of miRNAs

ENCODE annotations



WE ACCELERATE DISCOVERY

HOME PROGRAMS RESEARCH FUNDING NEWS & EVENTS MULTIMEDIA HIGHLIGHTS ABOUT CONTACTS
Genotype-Tissue Expression (GTEX) | Publications Search | 3
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The Common Fund's Genotype-Tissue Expression (GTEx) Hoart tasce
program aims to study human gene expression and regulation in Uner Sooue

multiple tissues, providing valuable insights into the mechanisms of
gene regulation and, in the future, its disease-related perturbations.
Genetic variation between individuals will be examined for
correlation with differences in gene expression level to identify
regions of the genome that influence whether and how much a gene
is expressed. The GTEx project includes the following initiatives:
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MAGIC: HOMA-IR (all SNPs)
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MAGIC: HOMA-IR
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New in Genome Discovery

* Integration
 Genome, transcriptome, SV, ...



AVERAGE HEIGHT OF PARENTS (IN)



Concentrating Heritability

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,''* S. Hong Lee,! Michael E. Goddard,?? and Peter M. Visscher!

ARTICLE

Estimating Missing Heritability for Disease
from Genome-wide Association Studies

Sang Hong Lee,! Naomi R. Wray,! Michael E. Goddard,23 and Peter M. Visscher!.*



Table 2 Comparison of results of different polygenic methods across diseases
Caused by common GWAS SNPs

L MM-based Polygenic modeling and Bayesian inference

Prevalence  Family based heritability Total variance
Disease (%) heritability® (s.e.) explained (50% CI) N SNPs (50% CI)
Rheumatoid 1 0.53-0.68 0.32 (0.037) 0.18 (0.15-0.20) 2,231
arthritis (-0.13 MHC)® (+0.04 known non-MHC)®  (1,588-2,740)
Celiac disease 1 0.5-0.87 0.33(0.042) 0.44 (0.40-0.47) 2,550
(-0.35 MHC)® (1,907-3,061)
MI/CAD 6 0.3-0.63 0.41 (0.067) 0.48 (0.43-0.54) 1,766
(1,215-2,125)
T2D mellitus 8 0.26-0.69 0.51 (0.065) 0.49 (0.46-0.53) 2,919

(2,335-3,442)

3Family based heritability estimates were taken from previous data for rheumatoid arthritis®’-22, celiac disease®3°, MI/CAD?!-32
and T2D33.3%, ®'We excluded some loci in certain analyses: although the family based heritability estimates are based on the
whole genome, the extended MHC region was removed from the common GWAS SNP analyses for rheumatoid arthritis and
celiac disease, and validated non-MHC loci were further removed from the polygenic modeling analysis of the rheumatoid
arthritis GWAS data. 50% Cl, 50% credible interval; s.e., standard error.

Stahl et al, Nat Gen
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Concentration of Heritability

« Smaller numbers of eQTLs (3-30K)
account for 30-60% of heritability

estimated for all variants after QC
(150-600K)

 Observed across autoimmune and
inflammatory diseases,
neuropsychiatric, metabolic, etc.

» Partitioning by cross vs. single

tissues, cis- and trans-, common
and rare



Relationship Between Risk and MAF

Penetrance

Mendelian
disease

Highly unusual for
common diseases

termediate
' e I’anC =

identified by
GWA studies

|Very rare 0.001 \Ra_ré 0.01 ‘Uncommon| 0. ‘Common

Lobo, I. (2008) Multifactorial inheritance and genetic disease. Nature Education 1(1):5

( Most variants

Allele
frequency




Expected Relationship Between

MAF and Effect Size?

Human populations have been
expanding super-exponentially
Are rare variants largely functional and

strongly selected against? Or largely
neutral?

What are the implications for this
relationship when fithess affects
variation at a gene through phenotype
A, but some variants at the gene affect
risk for disease B (unrelated to A)?



Improving Inference in Studies of
Rare Variants

» Maximizing the information on rare
variant associations will require
considering new dimensions in
analysis

* Current generation of studies have
considered the contributions of
rare and common variants in
complete isolation



Dimensions in the Analysis of
Rare Variants

Effect
size




Dimensions in the Analysis of
Rare Variants

Effect
size




Dimensions In the Analysis of
Rare Variants

Effect
size




Dimensions in the Analysis of

Rare Variants

PrObabi"ty a Mendelian Genes
misfunctioning| Drug Metabolizing Genes
protein affects

function of

organism

Probability Variant Affects
Function of Protein



New in Genome Discovery

- Key genes

- Mendelian disease genes may contribute
to more than just Mendelian disease
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A Nondegenerate Code of Deleterious Variants in
Mendelian Loci Contributes to Complex Disease Risk

Blair DR, Lyttle CS, Mortensen JM, Bearden CF, Jensen AB, Khiabanian H, Melamed
R, Rabadan R, Bernstam EV, Brunak S, Jensen L], Nicolae D, Shah NH, Grossman
RL, Cox NJ, White KP, Rzhetsky A




Mendelian Disease Genes...

- Have larger variation in expression than
other genes

- Are more broadly expressed across
tissues than other genes

- Are more likely to have at least one SNP
highly significantly associated with its
expression (an eQTL)

- eQTLs for Mendelian disease genes are
more likely to be associated with
common disease and complex traits



New in Genome Translation

- Large-scale prediction
* Polygenic prediction
* Other -omics



Prediction in the Era of Big Data
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Galton,
1889

vir.] DISCUSSION OF THE DATA OF STATURE. 107

contrived more than one form of apparatus by which
the probable stature of the children of known parents
can be mechanically reckoned. Fig. 12 is a representation
of one of them, that is worked with pulleys and weights.
A, B, and C are three thin wheels with grooves round
their edges. They are screwed
together so as to form a single
piece that turns easily on its
axis. The weights M and F are
attached to either end of a thread
that passes over the movable
pulley D. The pulley itself hangs
from a thread which is wrapped

FIG .12,
TO FORECAST STATURE

two or three times round the ||mae| remate |~mace
groove of B and is then secured w|l|§ g >
to the wheel. The weight SD : § 2 5
hangs from a thread that is o N
wrapped two or three times round i, i
the groove of A, and is then mj ;:_”
secured to the wheel. The dia-

meter of A is to that of B as 2 F

to 3. Lastly, a thread is wrapped
in the opposite direction round
the wheel C, which may have
any convenient diameter; and is

1 L -
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Cornell University
Library

arXiv.org > stat > arXiv:1303.1788

Statistics > Applications

Poly-Omic Prediction of Complex Traits: OmicKriging

Heather E. Wheeler, Keston Aquino-Michaels, Eric R. Gamazon, Vassily V. Trubetskoy, M. Eileen Dolan, R. Stephanie
Huang, Nancy J. Cox, Hae Kyung Im

(Submitted on 7 Mar 2013 (v1), last revised 12 Sep 2013 (this version, v2))



Physical variable
(ex. rainfall)
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Build large-scale
predictors for
hypertension using
GWAS meta-analysis
on 20,000+ subjects
Test quality of
prediction for
bevacizumab-
induced hypertension
in clinical trials data
(80303)

AUC ~ 0.68 for
polygenic prediction



Large-scale -Omic Predictors

» Can be used in much the same way
as biomarkers for risk prediction

* Can be built using data on 10’s to
100’s of thousands of individuals

» Can be tested and validated in
high-throughput using information
in CRDWs and existing biobanks

« Can be combined with other —omic,

biomarker, and EMR usage-based
predictors



We Have Been Picking the Cherries
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