

Globus Online for DESDM

Don Petravick

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

- DES combines four probes of Dark
 Energy:
 - Type la Supernovae (SN)
 - Baryon Acoustic Oscillations
 (BAO)
 - Galaxy clusters (GC)
 - Weak Gravitational Lensing (WL)

• Program

- Five years,
- <u>525 nights of observation</u>
- <u>300 million galaxies that are</u>
- <u>Survey will image 5000 square degrees</u>
- <u>5 optical filters to obtain crude spectra</u>
- Also observe smaller patches to discover and study thousands of supernovae.

Scientists and Science Facilities

- DESDM is made up of many state of the art codes.
 - Few are be-spoken -- Composed (semi) autonomously
 - Pl's involved in a continuum of projects,
- Standards world of astronomy => files

Demanding Schedule

- While on-sky, we need to keep up with certain processing.
 - 80% of the time, the survey table will be updated astronomical sunset at CTIO on the following night.
 - 80% of the time, SN fields will be processed by sunset at CTIO on the following night.
 - Otherwise the processing of the wide field data shall be completed within 3 business days. 80% of the time.
- XSEDE -> Processing capability on 3 machines.
- Implies transport anywhere.

NSF environment for "big small projects"

- OK, we're not an MREFC.
 - Look for leverage, not silos
- "Many research projects require access to computational, data storage or visualization resources in order to complete the work proposed. For those projects that require such resources at a scale that is beyond that typically available locally, NSF provides the TeraGrid.
- DESDM:
 - Database, central file store: Urbana, IL
 - Bulk Compute:
 - UCSD (~2000 mi)
 - TACC (~1000 mi)
 - DR FNAL (160 mi) + ???

File Sizes do not want to grow exponentially

Plot: File Size Distribution on UNIX Systems —Then and Now: Andrew S. Tanenbaum, Jorrit N. Herder*, Herbert Bos

- DESDM:
 - > 2PB of (compressed) data files.
 - Median file size Few 100 KB.
- Pattern has been observed at DOE and other HPC centers to this day.

Basic unit of "focus " in DES

Information

- CCD: 1024 x 2048 X 16 bit == 4MB.
- Exposure: 62 x 4 MB == 248 MB
- Tile: 0.75 sq degrees. (many per "exposure") ~ 50 MB.
- Most "sky" is dark -> (lossy) compression x5, lossless: x2.
- Calibration and other files << above files.
- Median "natural: file size
 - is small
 - Will not grow over lifetime of system.

- Many small files.
- Codes you don't control.
- Bulk compute >> 1000 km away?
- Lean budgets, pressure to do more with less.
- Not problem not understood by many.

After some in-field measurements:

- Divide xfer into batches of k files (K now lost to history)
- Each unit of xfer is 1/9th of the files.
- Transfer each file in stripes of 4.
- Check source against "truth" before and after xfer.
 - But checks "must" be trivial compared to xfers.

So observe # open TCP streams DARK ENERGY SURVEY

NCSA

Issues to resolve in file transfer performance

Open Transfer Sockets v.s Time (seconds) Transfers from NCSA-> TACC (35 ms latency)

- Technical
 - > 50% dead cause: assumptions in mind of programmer.
 - False assumption -- "Verify" a trivial amount of time.
 - Dividing work ahead of time in a slice by the number of files.
 - Wait for all nine to complete before beginning check
 - MLST: request-response MEP is linearly worse w/ latency.
 - Move from local (e.g. "abe") to remote
 - Also- a lot of mechanics -- under the sheets:
 - A mix of uberFTP + globusURL copy.
 - Perl gymnastics to write, parse command files, pu tthem all into /tmp but provide for debugging
 - (guess) Programmer focused on mechanics.

Basic lessons surfacing

- Efficiency follows specialization. (Smith, 1776)
 - Lemma : Its even more efficient for specialized people to build smarts into tools, not people. (Hayek? 1945?)
- You can have any color you want as long as it's black(Ford, ~1915).
 - Exponential increase in Capabilities (Moore, 1965).
 - Cost per pound for commodity goods is constant (GM, 1935)
 - Capacity compute in storage is cheap.
 - The number of files will explode, given exponential increase in storage... (Tannenbaum, 198x).
- 90% of ...network... code....[deals with] Errors (Gosling, 2003)
- "A business absolutely devoted to service will have only one worry about profits. They will be embarrassingly

14

- Experiment:
 - Responds by (further) running this code in parallel.
 - "obvious" way to cut time.
 - Gets GridFTP error when (3 or 4 or 5 or 10) * 36 streams are active.
 - Blame "darn grid FTP servers"
 - or whatever strikes them....
 - Ideally, no incentives for abuse.
 - But this requires iteration, so that technical can converge to ideal.
 - I can't afford that for non-astronomy codes.

- Astronomy/ DES benefits from "renting" focused taskoriented specializations.
- Lean budgets make make it impossible for DES to achieve specialized knowledge within its project.
 - For many tasks, I have
 - The kind of people who can learn these things....
 - ... not the kind of people who have done these things.
 - Need to focus on astronomy domain.
 - Not in solving and perfecting infrastructure
- (Obvious) other places principle can be applied
 - AAA
 - Storage
 - RDB