# EXPERIENCE WITH GLOBUS ONLINE AT FERMILAB

Thu Apr 12, 2012

Gabriele Garzoglio Computing Sector

Fermi National Accelerator Laboratory





# Why am I here?

- The Fermi National Accelerator Laboratory serves a large number of communities in High Energy Physics
  - Through the partnership with the Open Science Grid Consortium, Fermilab collaborates with communities from a variety of scientific fields
- It is in the mission of the Scientific Computing at Fermilab (and my department Grid and Cloud Computing) to support their computations on highly distributed resources
- We cannot (...and are not interested in...) reinventing all services necessary to do this
- To achieve our mission, we create a network of partnerships with international groups of computer scientists
- These partnerships make us and our partners stronger because of our users
- Disclaimer: this talk only covers our work on GO









### It's about the science!

- The D0 and CDF examples:
  - CDF & D0 Top Quark Asymmetry Results.
  - CDF Discovery of  $\Xi_b^0$ .
  - CDF  $\Lambda_c$ (2595) baryon.
  - Combined CDF & D0 Limits on standard model higgs mass.
- Hundreds of publications per year!







# Fermilab Collaborates with CERN on the LHC



- Data recorded over O(10) yrs: CDF = 8.63 PB; Dzero 7.54 PB.
   Now we expect 5+ PB every year for LHC
- Fermilab will support analysis for 5+ years and data access for 10+ years.







# Roles: energy frontier











# **Energy frontier: the legendary Tevatron**





- First major SC synchrotron
- Industrial production of SC cable (MRI)
- Electron cooling
- New RF manipulation techniques



#### **Detector** innovations

- Silicon vertex detectors in hadron environment
- LAr-U238 hadron calorimetry
- Advanced triggering



### **Analysis Innovations**

- Data mining from Petabytes of data
- Use of neural networks. boosted decision trees
- Major impact on LHC planning and developing
- GRID pioneers



### Major discoveries

- Top quark
- Top mass  $\rightarrow$ Higgs mass prediction
- Direct Higgs searches
- Ruled out many exotica



### The next generation







GlobusWorld 2012: Experience with GO@Fermilab

### Roles: cosmic frontier









DM: ~10 kg DE: SDSS P. Auger DM: ~100 kg DE: DES P. Auger Holometer? DM: ~1 ton DE: LSST WFIRST?? BigBOSS?? DE: LSST WFIRST??

Now



2013

2016

2019

2022

From P. Oddone, Secretary of Energy's Visit, June 2nd, 2011



## Roles: intensity frontier









MINOS MiniBooNE MINERVA SeaQuest

**NOvA** MicroBooNE g-2 **MINERVA** MINOS SeaQuest

NOvA g-2 **LBNE** Mu2e

Project X+LBNE μ, K, nuclear, ... ν Factory ??

Now

2013

2016

2019

2022









From P. Oddone, Secretary of Energy's Visit, June 2nd, 2011



GlobusWorld 2012: Experience with GO@Fermilab

### Work done to date on GO

- Integration of Workload Management and Data Movement Systems with GO
  - Center for Enabling Distributed Petascale Science (CEDPS): GO integration with glideinWMS
  - Data Handling prototype for Dark Energy Survey (DES)
- Performance tests of GO over 100 Gpbs networks
  - 3. GO on the Advanced Network Initiative (ANI) testbed
- Data Movement on OSG for end users
  - Network for Earthquake Engineering Simulation (NEES)

# Communities potentially interested in follow ups with GO

Intensity Frontier, QCD, Accelerator modeling,
Computational Cosmology, et al.

ENERGY
Fermilab

### 1. CEDPS: Integrating glideinWMS with GO

Parag Mhashilkar, Fermilab; Condor Team, U. Wisconsin Madison; GO team, ANL

#### Goals:

- Middleware handle data movement, rather than the application
- Middleware optimize use of computing resources (CPL does not block on data movement)
- Users provide data movement directives in the Job Description File (e.g. storage services for IO)
- glideinWMS procures resources on the Grid and run jobs using Condor
- Data movement is delegated to the underlying Condor system
- globusconnect is instantiated and GO plug-in is invoked using the directives in the Job Description File
- Condor optimizes resources



Feb 26 Feb 29 Mar 3 Mar 6 Mar 9 Mar 12 Mar 15 Mar 18 Mar 21

glideinWMS Glidein Factory.

WMS Pool

Central Manager

VO Infrastructure

Condor

Scheduler

**VO Frontend** 



000000

800000

600000

400000

### Validation Test Results

- Intensity Frontier (Minerva) jobs transfer output sandbox to GO endpoints
  - Jobs: 2636 (500 running at a time)
  - Total files transferred: 16359
- Up to 500 dynamically created GO endpoints at a given time.
- 95% transfer success rate.
- Stressing scalability of GO in new way
- Main scalability issue identified: **Endpoint** management not sufficiently responsive at this scale
- GO team working to increase scalability by
  - reusing GO endpoints and
  - transferring multiple files at once.

| Transfer Result          | Count |
|--------------------------|-------|
|                          |       |
| Successful - Plugin exit | 15594 |
| code 0 + scp (success)   |       |
| Failed                   | 765   |
| Total                    | 16359 |
|                          |       |



| Plugin Exit Status    | Count           |
|-----------------------|-----------------|
| Exit Code 0 (Success) | 14094           |
| Exit Code 1 (Failure) | 46              |
| Abnormal              | 2234            |
| Terminati on          |                 |
| Total                 | 16374           |
| Analysis based on e   | xit code of the |

plugin in logs -

- Plugin terminati ons analyzed:
- Duplicate terminati ons in same log fi le(ignored): 15
- Total plugin log fi les analyzed:



Analysis based on the last action tried by the plugin

 Status of the action never reported back to the plugin

endpoint-add

scp (Transfers

success)

(cleanup) Other









# 2. Prototype integration of GO with DES Data Access Framework

See Don Petravick's talk on Wed

- Motivation
  - The Dark Energy Survey is an experiment on the cosmological frontier at Fermilab. Getting ready for data taking...
- DES Data Access Framework (DAF) uses a network of GridFTP servers to reliably move data across sites.
  - DAF data transfer parameters were not optimal for both small and large files.
  - 2. Reliability was implemented inefficiently by sequentially verifying real file size with DB catalogue.
- Tested DAF moving 31,000 files (184 GB) with GO vs. UberFTP
  - Time for Transfer + Verification is the same (~100 min)
  - Transfer time is 27% faster with GO than with UberFTP
  - Verification time is 50% slower with GO than sequentially with UberFTP
- Proposed Improvements:
  - Allow specification of src / dest transfer reliability semantics (e.g. same size, same CRC, etc.) Implemented for size
  - Allow finer-grain failure model (e.g. specify number of transfer retries)
  - Provide interface for efficient (pipelined) Is of src / dest files.





# 3. GO on the ANI Testbed

Motivation:

Testing Grid middleware readiness to interface 100 Gbits links on the Advanced Network Initiative (ANI) Testbed.

- Characteristics:
  - 300GB of data split into 42432 files (8KB – 8GB) (small, medium, large, all sizes)
  - Network: aggregate 3 x 10Gbit/s to bnl-1 test machine
- Results
  - GO (yellow) does almost as well as direct GridFTP practical max (red) for medium-size files.
  - Increasing concurrency and pipelining on small files improves throughput by 30%.
  - GO auto-tuning works better for medium files than for the large files









### 4. Data Movement on OSG for NEES

Motivation

OpenSees

A. R. Barbosa, J. P. Conte, J. I. Restrepo, UCSD

- supporting NEES group at UCSD to run parametric studies of nonlinear models of structure systems on the Open Science Grid
- NEES scientist ran at 20 OSG sites, then moved 12 TB from the RENCI submission server to the <u>user's desktop</u> at UCSD using GO
- Note: there is still no substitute for a good network administrator
  - Initially, we had 5 Mbps → eventually 200 Mbps (over 600 Mbps link).
  - Improvements: Upgrade eth card on user desktop; Migrate from Windows to Linux; Work with the user to use GO; Find a good net admin to find and fix broken fiber at RENCI, when nothing else worked.
- Better use of GO on OSG: Integrate GO with the Storage Resource Broker (SRM)

| Number of NLTH analyses per parameter set realization | 180                           |
|-------------------------------------------------------|-------------------------------|
| Average duration of NLTH analysis                     | 12 hours                      |
| Average size of output data                           | 1.5 GB                        |
| Parameters considered                                 | 6                             |
| Perturbations considered                              | 4                             |
| Estimated clock time (180x12x[(6x4x2)+1])             | 106,800 hours<br>(12.2 years) |
| Estimated output data (180x1.5x[(6x4x2)+1])           | 12 TB                         |





# Sample future work and ideas (1)

 CortexNet: Integration of network intelligence with data management middleware

How do I select the highest-throughput source of a

data replica considering the network conditions?

How do I integrateGO with CortexNet?

There are interesting algorithmic challenges: if you are a network expert with background on Al or statistics, let's talk!







# Sample future work and ideas (2)

- VCluster: Transparent access to dynamically instantiated resources through standard Grid interfaces
- Collaborating with KISTI, South Korea, to dynamically instantiate OSG-compatible Grid Clusters from Cloud resources

Work by Seo-Young Noh and the FermiCloud team



- Focusing now on idle VM detection and monitoring to automate Grid cluster expansion
- Can I use GO to distribute the VM images to the collaborating Cloud resources?





# Summary

- Fermilab developers and computer scientists support distributed large-data intensive computing for HEP and other scientific communities via OSG.
- We collaborate closely with a wide variety of external research and development groups.
- We have worked with the GO team and improved the system:
  - Stressed the "many-globusconnect" dimension.
  - New requirements on reliability semantics.
  - Auto-tuning at extreme scale.
  - Usability.
- Fermilab science has many needs and ideas that are future opportunities for collaboration.





### References

- CEDPS Report: GO Stress Test Analysis
  - https://cd-docdb.fnal.gov:440/cgi-bin/RetrieveFile? docid=4474;filename=GlobusOnline %20PluginAnalysisReport.pdf;version=1
- DES DAF Integration with GO
  - https://www.opensciencegrid.org/bin/view/Engagement/ DESIntegrationWithGlobusonline
- GridFTP & GO on the ANI Testbed
  - https://docs.google.com/document/d/ 1tFBg7QVVFu8AkUt5ico01vXcFsgyIGZH5pqbbGel7t8/ edit?hl=en\_US&pli=1
- 4. OSG User Support of NEES
  - https://www.opensciencegrid.org/bin/view/Engagement/ EngageOpenSeesProductionDemo



