

New data-intensive experiments and scientific opportunities for x-ray micro-tomography

<u>Francesco De Carlo</u>, Xianghui Xiao, Yongsheng Pan, Imaging Group

Nicholas Schwarz, Claude Saunders Software Services Group

Peter R. Jemian BCDA Group

Chris Jacobsen APS X-ray Science Division

Outline

From high throughput to real-time micro tomography

• Static to dynamic samples

Computing Challenges

- Large volume data handling
- Real time data analysis
- Data distribution

Data exchange solution

- Meta data information
- Data Provenance

Outlook

Multiscale and multi technique data integration

Micro Tomography at the APS

2-BM	5-33 keV, 25 x 4 mm ² , Dedicated tomography
13-BM	7-70 keV, 50 x 4 mm ² , Multipurpose for geosciences
32-ID	8-35 keV, 2 x 1 mm ² , Multipurpose phase-contrast imaging
5-BM	10-42 keV, 30 x 2 mm ² , Multipurpose (materials, polymers)

Micro Tomography of Static Samples

High throughput fully automated $1\mu m$ resolution tomography

New Reusable Solid Rocket Motors Insulation

Self healing composite - healing efficiency

2-BM:

- Dedicated to micro-tomography
- Fully automated
- High throughput (>100 samples/day)
- Real time data analysis

Mechanical behavior of sand under compression

Geopolymers

Highly Explosive Materials (PBX-9501) Modeling

Ceramic coating layers

Micro Tomography of Static Samples

High throughput fully automated $1\mu m$ resolution tomography

New Reusable Solid Rocket Motors Insulation

Self healing composite - healing efficiency

2-BM:

- Dedicated to micro-tomography
- Fully automated
- High throughput (>100 samples/day)
- Real time data analysis

Mechanical behavior of sand under compression

Geopolymers

Highly Explosive Materials (PBX-9501) Modeling

Ceramic coating layers

Micro Tomography of Static Samples

High throughput fully automated 1µm resolution tomography

New Reusable Solid Rocket Motors Insulation

Self healing composite - healing efficiency

Data handled per sample (every ~ 17 min)

		Pixles		Size
CCD single projection	2,	,024 x 2,048		8.00 Mbyte
Raw data set	2,024	x 2,048 x 1,440)	11.25 Gbyte
Normalized	2,024	x 2,048 x 1,440)	22.50 Gbyte
Reconstruted	2,024	x 2,048 x 2,048	3	32.00 Gbyte
			Total	65.76 Gbyte
		Current CCD to	ecnology	1
Data Proce	5.4		TB/day	
Data distributed to u	3.6		TB/day	

Mechanical behavior of sand under compression

Geopolymers

Highly Explosive Materials (PBX-9501) Modeling

Ceramic coating layers

Micro tomography of static samples

Current detectors, controls and data flow

Linux Windows

Micro tomography of static samples

Current detectors, controls and data flow

Linux Windows

Micro tomography of static samples

Current detectors, controls and data flow

Linux Windows

Thermal expansion cracking in rocks

Carbon sequestration, mine and oil exploration

200 °C

395 °C

pores distribution

Nature Vol. 459 18 June 2009 doi:10.1038/nature08051

Science 332, 88-91 (2011). DOI: 10.1126/science.1202221

real size samples in real operational conditions

Mechanical Properties of Metal Matrix Composite Materials

transportation technology, new material, industrial applications

N. Chawla J. Williams ASU

real size samples in real operational conditions

Mechanical Properties of Metal Matrix Composite Materials

transportation technology, new material, industrial applications

real size samples in real operational conditions

Mechanical Properties of Metal Matrix Composite Materials

transportation technology, new material, industrial applications

N. Chawla J. Williams ASU

real size samples in real operational conditions

Mechanical Properties of Metal Matrix Composite Materials

transportation technology, new material, industrial applications

N. Chawla J. Williams ASU

Challenges in data modeling and data mining 2D/3D of Juvenile Zebra Fish Retina

SPIE, (2010), 78040M. DOI: 10.1117/12.860783

Computing Challenges

Very large data volumes

Data mining

Image registration of dynamic system

- 3D registration of sections
- Feature detection (e.g., synapses)
- Network analysis

Modeling

Multi scale data integration

- Stitching and alignment of overlapping tiles
- Visualization

Integration of data from different instrument

- Micro and nano tomography
- Tomography and fluorescence
- Tomography and diffraction

Thermal Expansion Displacement in

rocks

Data Exchange for Scientific Data and Metadata

Scientific Metadata

- Tomography Reconstruction
 - Iterative, analytical, interpolation type, etc.
- Instrument
 - Pixel size, orientation, etc.
- Sample
 - Temperature, pressure, etc.
- Data
 - 3D density map

All definition manual, code examples etc. in less than 20 pages !

Infrastructure Metadata

- Data transfer Status
 - End-points, progress, etc.
- Processing Status
 - Data ingestion date
- Cluster Queue status

Provenance Layout

Data Exchange for Scientific Data and Metadata

6.1 Top level (root)

This node represents the top level of the HDF5 file and holds some general information about the file.

Table 2: 2FXi top level entries

Member	Туре	Example
implements	string	"exchange:instrument:sample:provenance"
version	string	~1.0.1~
exchange_N	Exchange class	
instrument	Instrument class	
sample	Sample class	
provenance	Provenance class	
reconstruction	Reconstruction class	

implements - A colon separated list that shows which components are present in the file. The only *mandatory* component is "exchange" but a more general 2FXi file will also contain sample and instrument information, if so these will be declared in implements as "exchange:sample:instrument"

version - 2FXi format version.

 $exchange_N$ - The measurements recorded in this file.

instrument - The instrument used to collect this data.

sample - The sample measured.

provenance - The Provenance class describes all process steps that have been applied to the data.

reconstruction - The Reconstruction class contains all information and parameters re- quired to run a tomography reconstruction.

Preferred Operational Workflow

Conclusions

From 3D static to 3D dynamics => computing challenges

Gridftp provided a powerful tools for data distribution

 The Globus On line user friendly version made the real break through

Data integration in an essential tool for

- Software sharing
- Multiscale and multi technique data integration

Thank you

IMG staff: Kamel Fezzaa, Steve Wang, Wah-Keat Lee, Xianghui Xiao, Yongsheng Pany, Joan Vila, Alex Deriy, Pavel Shevchenko, Joe Arko and Francesco De Carlo

IMG users: Nik Chawla, Florian Fusseis, Keith Cheng, C. Powel, Wilson Chiu, Jung Ho Je, Jake Socha, Wen-lu Zhu