Resource Provider Spotlight: Globus Storage & IT Services

GlobusWORLD 2012

David Champion – dgc@uchicago.edu
Jeremiah Stuppy – jstuppy@uchicago.edu
Anita Nikolich – anikolich@uchicago.edu
State of Affairs

• Working relationships in science divisions, Computation Institute
 • ATLAS
 • Ad hoc support to individual PIs

• “Research Storage”
 • In the wind (but not here yet): Institutional Archive
 • Enterprise NAS (EMC² Isilon)
 • Highly available, highly scalable, highly priced
 • Goal: make mid-scale, reliable storage available for critical data
Approach

• Globus Online plan
 • Globus Transfer opened 2011
 • Globus Storage in development

• Mutual interest in collaboration
 • Globus wish: a pattern of institutional/commercial provider cooperation
 • ITS wish: better integration with IT partners and resources
 • Shared technological experiences and interests
Approach

• Proposal
 • ITS provide Isilon for Globus Storage pilot & production
 • Upon launch, ITS becomes a campus provider of storage resources via Globus Online
 • Jointly develop “retail” model for access and growth

• Benefits
 • Globus: additional storage backend
 • Globus: foundation for developing service models
 • ITS: partnership with domain leaders
 • ITS: platform experience
Campus Provider Overview

- Incremental approach to service provisioning
- Simple deployment

- Pure infrastructure — who can say no?
Globus Storage Architecture
Globus Storage Architecture

- **Filesystem Emulation**
 - Access portal (UI) requests named files
 - Name Mapper maps named files to objects identified by UUID
 - Access Broker manages policy for requested object
Object Management
- Replication Manager may distribute multiple copies of object across disparate object stores
- May choose object store based on network proximity or other factors
- Replication and proximity policy selectable by user

Object stores may have differing policies
- User eligibility (institutional vs commercial)
- Backup policy
- Retention
- Etc.
Globus Storage Provider Architecture

Object Store (IT Services)

Transport VM
- GridFTP service
- NFS client

Transport VM
- GridFTP service
- NFS client

Transport VM
- GridFTP service
- NFS client

VMware ESX platform

Isilon NAS
Globus Storage Provider Architecture

- Isilon Storage Array (EMC²)
 - A simple, file level, scalable NFS service
 - Node-based clustering: higher throughput using multiple pipelines
 - 10 TB space for Globus Storage pilot, exported to Transport VMs
 - Total platform capacity easily expanded
 - Easy to extend allocation to the Globus Storage project as needs change
Globus Storage Provider Architecture

- **Transport VMs**
 - Simple Linux servers; no variation from enterprise profile
 - RHEL 5.7, because no special needs
 - Uses GridFTP for transport to Globus Online
 - Multiple instances to meet pipelining expectation of Isilon cluster due to node based architecture
Globus Storage Provider Architecture

• Performance
 • Ideally, one transport VM per Isilon node
 • ESX hosts are Dell server blades
 • Blade chassis has 10G direct to data center core
 • Virtualization allows best match between Isilon node and I/O share in server chassis
Globus Storage Provider Architecture

- Globus components from EPEL
 - Fedora project, Extra Packages for Enterprise Linux
 - Standard software distribution point for our environment; no extra requirements
 - Straightforward GridFTP installation with single local user mapped by /etc/grid-security/grid-mapfile
 - Easy to set up, but does require a trusted certificate
Caveats

Certain responsibilities are delegated to Globus Online:

- Only GO has visibility into per-user resource utilization
 - Campus Provider has aggregate view
 - Affects chargeback — easiest for GO to proxy billing
- Only GO has control of object storage
 - Individual objects have no metadata properties at provider end
 - Affects access management and quotas/allocations
Campus Provider Benefits

- Lowers Provider’s cost for additional storage capacity
- Single relationship to manage
 - Provider works with Globus Online, not with users — even though they are our own users
- Single charge point
 - Globus Online pays Provider for aggregate use, rebills for individual use
Lessons Learned

• More testing needed
 • Sizing of transport servers is not tuned to workload
 • How many GridFTP servers are needed for optimum bandwidth?
 • How does resource consumption of VMs correspond to physical hosts under full workload?
 • Is virtualization the right approach?
 • Impact to enterprise workload: must scale these transport servers to have predictable maximum effect on the infrastructure as a whole
Future Plans

• Science DMZ placement
 • High throughput
 • Less restrictive access
 • Colocated with related applications, data

• Separate physical server infrastructure
 • Dedicated to science data flows
 • Easier management
 • Lower potential impact to enterprise

• Improved throughput to storage
 • Second Isilon array
 • Use Isilon replication for enhanced data protection
Future Plans

- Integration of Globus metadata with campus IDM
 - Automatic availability
 - Means of asserting metadata to Globus (allocation size, eligibility, groups)
- Closer proximity of Globus Storage software to array
 - Meeting with EMC\(^2\) at SC11
 - Build Globus Storage/Globus Transfer target embedded within Isilon shell
Suggested Enhancements (Wishlist)

• Capacity and Performance Planning, Insight, Reporting
 • Users choose where data goes at Globus Online; no mechanism to check whether provider is supplying adequate capacity and per-workload performance
 • Local analysis tools can only discern aggregate utilization
 ➢ Need a resource administrator interface to the metadata services behind Globus Storage

• Data Management
 • Legal restrictions, HIPAA, etc.
 • May have data that should not be backed up to our central systems
 • May have data that should not be stored extra-institutionally
 • Provider may have accountability to authorities for data provenance and residence
 ➢ Need provider interface to classify data and flag it for specific policies
Try This at Home

• IT: fulfill service mission without talking to users
 • IT departments are good at providing core service
 • IT departments are less good at matching service to need

• Globus: compelling product but limited resources
 • Globus Online depends on external resource providers
 • Providers with existing commitment to mutual customers are cheaper to work with
 • By lowering cost to provider, provider is easier to work with

• Research: single entity managing data
 • No IT required
Questions?